forked from webmachinelearning/webnn
-
Notifications
You must be signed in to change notification settings - Fork 0
WebNN use cases, models and ops
Ningxin Hu edited this page Jul 4, 2019
·
4 revisions
Use case | Network |
---|---|
Image classification | MobileNet, SqueezeNet, ResNet, Inception |
Object/Person detection | TinyYOLO, SSD |
Semantic Segmentation | DeepLab |
Skeleton Detection | PoseNet |
ONNX Op | MobileNetV2 (ONNX) | MobileNetV2 (TFLite) | SqueezeNet1.1 (ONNX) [4] | SqueezeNet (TFLite) | ResNet50V2 (ONNX) | InceptionV4 (TFLite) | TinyYOLOV2 (ONNX) [6] | SSD MobileNetV1 (TFLite) [7] | PoseNet (TFLite) | DeepLabV3 (TFLite) |
---|---|---|---|---|---|---|---|---|---|---|
Add | ✔️ | ✔️ | ✔️ | ✔️ | ||||||
AveragePool | ✔️ [1] | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |||
BatchNormalization | ✔️ | ✔️ | ✔️ | |||||||
Clip | ✔️ [2] | ✔️ [2] | ✔️ [2] | ✔️ [2] | ||||||
Concat | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |||
Conv | ✔️ | ✔️ [3] | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ [3] | ✔️ [3] | ✔️ [3] |
Gemm | ✔️ | ✔️ [5] | ||||||||
LeakyRelu | ✔️ | |||||||||
MaxPool | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |||||
Relu | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |||||
Reshape | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ||||
Resize | ✔️ [8] | |||||||||
Sigmoid | ✔️ | |||||||||
Softmax | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
Notes:
- GlobalAveragePool op of ONNX
- RELU6 op of TFLite
- CONV_2D and DEPTHWISE_CONV_2D op of TFLite
- Ignore Dropout op of ONNX
- FULLY_CONNECTED op of TFLite
- Ignore ImageScalar op of ONNX
- Ignore TFLite_Detection_PostProcess op of TFLite
- RESIZE_BILINEAR op of TFLite
TFLite Op | ONNX Op |
---|---|
ADD | Add |
AVERAGE_POOL_2D | AveragePool |
CONCATENATION | Concat |
CONV_2D | Conv |
DEPTHWISE_CONV_2D | Conv |
FULLY_CONNECTED | Gemm |
LEAKY_RELU | LeakyRelu |
LOGISTIC | Sigmoid |
MAX_POOL_2D | MaxPool |
RELU | Relu |
RELU6 | Clip |
RESHAPE | Reshape |
RESIZE_BILINEAR | Resize |
SOFTMAX | Softmax |