-
Notifications
You must be signed in to change notification settings - Fork 27.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
add Glm #33823
add Glm #33823
Conversation
Hey! 🤗 Thanks for your contribution to the Before merging this pull request, slow tests CI should be triggered. To enable this:
(For maintainers) The documentation for slow tests CI on PRs is here. |
207ec14
to
152569e
Compare
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Very very nice!
@@ -0,0 +1,27 @@ | |||
# Copyright 2020 The HuggingFace Team. All rights reserved. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
# Copyright 2020 The HuggingFace Team. All rights reserved. | |
# Copyright 2024 The HuggingFace Team. All rights reserved. |
STATE_DICT_MAPPING = { | ||
"transformer.output_layer.": "lm_head.", | ||
"transformer.": "model.", | ||
".embedding.word_embeddings.": ".embed_tokens.", | ||
".encoder.final_layernorm.": ".norm.", | ||
".encoder.layers.": ".layers.", | ||
"rotary_pos_embed.": "rotary_emb.", | ||
"self_attention.": "self_attn.", | ||
"query_key_value.": "qkv_proj.", | ||
"dense.": "o_proj.", | ||
"dense_h_to_4h.": "gate_up_proj.", | ||
"dense_4h_to_h.": "down_proj.", | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
cool! Let's setup good standards however, see MLLAMA, full explicit regex are more informative IMO! 🤗
vocab_size=original_config.pop("padded_vocab_size"), | ||
hidden_size=original_config.pop("hidden_size"), | ||
intermediate_size=original_config.pop("ffn_hidden_size"), | ||
num_hidden_layers=original_config.pop("num_layers"), | ||
num_attention_heads=num_attention_heads, | ||
num_key_value_heads=( | ||
num_attention_heads | ||
if not original_config.pop("multi_query_attention") | ||
else original_config.pop("multi_query_group_num") | ||
), | ||
attention_dropout=original_config.pop("attention_dropout"), | ||
max_position_embeddings=original_config.pop("seq_length"), | ||
rms_norm_eps=original_config.pop("layernorm_epsilon"), | ||
rope_theta=10000.0 * original_config.pop("rope_ratio", 1), | ||
use_cache=original_config.pop("use_cache"), | ||
head_dim=original_config.pop("kv_channels"), | ||
attention_bias=original_config.pop("add_qkv_bias"), | ||
eos_token_id=original_config.pop("eos_token_id"), | ||
pad_token_id=original_config.pop("pad_token_id"), | ||
tie_word_embeddings=original_config.pop("tie_word_embeddings"), |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Let's try to use ** here for attributes that have the same name
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I didn't to avoid adding unused fields, but I refactored to make that block nicer to read.
pass | ||
|
||
|
||
class GlmSdpaAttention(GlmAttention, GraniteSdpaAttention): |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
class GlmSdpaAttention(GlmAttention, GraniteSdpaAttention): | |
class GlmSdpaAttention(GraniteSdpaAttention): |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think this should be enough
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
holy molly so nice!
@require_torch_sdpa | ||
@slow | ||
@is_flaky | ||
def test_eager_matches_sdpa_inference(self, torch_dtype: str): |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
why do we have to overwrite this one?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Unfortunately, based on the random inputs there may be some times when one of the cases fail - I overwrote it to add the flaky
decorator (which allows the test to consistently pass)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Cool! In general the least we have to overwrite the better!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
meaning are there ways to remove some of the tests you added?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Unfortunately no -- based on the random seed, some are failing from time to time, and they need to be flaky
to consistently pass
Ready for last review @ArthurZucker, |
Thank you very much for your help. I also saw this huggingface PR. Thank you again for your support! |
Of course! |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
LGTM anything missing before we merge?
No, only issue are the docstrings in the configuration, but this will be solved with the auto-docstrings. In the meantime, I just moved the config outside modular to please the CIs. |
Confimed that slow tests pass for the model. Merging. |
* Create modular_glm.py * Update modular_glm.py * Finalize architecture without all attentions * Add all attentions modules * Finalize modular * Update given last version * Last update * Finalize model * Finalize converter * Update convert_glm_weights_to_hf.py * style * style * Create __init__.py * Aff all inits * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Correct the rotary embeddings * Remove apply_residual_connection_post_layernorm (always false) * remove use_rms_norm (always true) * remove past_layer_norm (always true) * Update __init__.py * Update config and license * start adding tests and doc * Add doc + style * Update test_modeling_glm.py * Add dummies * Apply correct modeling * Refactor attention to follow llama * Update __init__.py * Update convert_glm_weights_to_hf.py * Correct bias * remove linear_bias and pdrop (never used) * apply modular * Simplify converter * remove dummies + style * add model_input_names * Add pretraining_tp to config for when eager attention is used * Update modular to remove all pretraining_tp * Update test_modeling_glm.py * Update the __all__ * Update __all__ * Update __init__.py * Update test_modeling_glm.py * add revisions * Add the correct repos and revisions * style * Update __init__.py * update exports * remove import of modular files * style * Apply Llama changes + refine converter * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * style * Use new modular converter * add pretrainedmodel to init * style * Update test_modeling_glm.py * Move config outside modular to please CI about docstrings * Add dummies to please CI * Update glm.md * Update glm.md
* Create modular_glm.py * Update modular_glm.py * Finalize architecture without all attentions * Add all attentions modules * Finalize modular * Update given last version * Last update * Finalize model * Finalize converter * Update convert_glm_weights_to_hf.py * style * style * Create __init__.py * Aff all inits * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Correct the rotary embeddings * Remove apply_residual_connection_post_layernorm (always false) * remove use_rms_norm (always true) * remove past_layer_norm (always true) * Update __init__.py * Update config and license * start adding tests and doc * Add doc + style * Update test_modeling_glm.py * Add dummies * Apply correct modeling * Refactor attention to follow llama * Update __init__.py * Update convert_glm_weights_to_hf.py * Correct bias * remove linear_bias and pdrop (never used) * apply modular * Simplify converter * remove dummies + style * add model_input_names * Add pretraining_tp to config for when eager attention is used * Update modular to remove all pretraining_tp * Update test_modeling_glm.py * Update the __all__ * Update __all__ * Update __init__.py * Update test_modeling_glm.py * add revisions * Add the correct repos and revisions * style * Update __init__.py * update exports * remove import of modular files * style * Apply Llama changes + refine converter * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * style * Use new modular converter * add pretrainedmodel to init * style * Update test_modeling_glm.py * Move config outside modular to please CI about docstrings * Add dummies to please CI * Update glm.md * Update glm.md
@Cyrilvallez Hi Cyril, you PR for the 1M version of the model got an unexpected generation. Please refer to here for more information: https://huggingface.co/THUDM/glm-4-9b-chat-1m/discussions/17. |
* Create modular_glm.py * Update modular_glm.py * Finalize architecture without all attentions * Add all attentions modules * Finalize modular * Update given last version * Last update * Finalize model * Finalize converter * Update convert_glm_weights_to_hf.py * style * style * Create __init__.py * Aff all inits * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Correct the rotary embeddings * Remove apply_residual_connection_post_layernorm (always false) * remove use_rms_norm (always true) * remove past_layer_norm (always true) * Update __init__.py * Update config and license * start adding tests and doc * Add doc + style * Update test_modeling_glm.py * Add dummies * Apply correct modeling * Refactor attention to follow llama * Update __init__.py * Update convert_glm_weights_to_hf.py * Correct bias * remove linear_bias and pdrop (never used) * apply modular * Simplify converter * remove dummies + style * add model_input_names * Add pretraining_tp to config for when eager attention is used * Update modular to remove all pretraining_tp * Update test_modeling_glm.py * Update the __all__ * Update __all__ * Update __init__.py * Update test_modeling_glm.py * add revisions * Add the correct repos and revisions * style * Update __init__.py * update exports * remove import of modular files * style * Apply Llama changes + refine converter * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * style * Use new modular converter * add pretrainedmodel to init * style * Update test_modeling_glm.py * Move config outside modular to please CI about docstrings * Add dummies to please CI * Update glm.md * Update glm.md
* Create modular_glm.py * Update modular_glm.py * Finalize architecture without all attentions * Add all attentions modules * Finalize modular * Update given last version * Last update * Finalize model * Finalize converter * Update convert_glm_weights_to_hf.py * style * style * Create __init__.py * Aff all inits * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Correct the rotary embeddings * Remove apply_residual_connection_post_layernorm (always false) * remove use_rms_norm (always true) * remove past_layer_norm (always true) * Update __init__.py * Update config and license * start adding tests and doc * Add doc + style * Update test_modeling_glm.py * Add dummies * Apply correct modeling * Refactor attention to follow llama * Update __init__.py * Update convert_glm_weights_to_hf.py * Correct bias * remove linear_bias and pdrop (never used) * apply modular * Simplify converter * remove dummies + style * add model_input_names * Add pretraining_tp to config for when eager attention is used * Update modular to remove all pretraining_tp * Update test_modeling_glm.py * Update the __all__ * Update __all__ * Update __init__.py * Update test_modeling_glm.py * add revisions * Add the correct repos and revisions * style * Update __init__.py * update exports * remove import of modular files * style * Apply Llama changes + refine converter * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * Update convert_glm_weights_to_hf.py * style * Use new modular converter * add pretrainedmodel to init * style * Update test_modeling_glm.py * Move config outside modular to please CI about docstrings * Add dummies to please CI * Update glm.md * Update glm.md
GLM model!