Skip to content

Commit

Permalink
Port IDEFICS to tensorflow (#26870)
Browse files Browse the repository at this point in the history
* Initial commit

* Just a copy of modeling_idefics.py that will be ported to TF

* - Prepend TF to the name of all classes
- Convert pytorch ops to TF (not all operations are converted yet)

* Add TF imports

* Add autotranslated files

* Add TF classes to model_tf_auto.py

* Add the TF classes in model_doc

* include auto-translated code

* Adopted from auto-translated version

* Add a forgotten super().build

* Add test code for TF version.

* Fix indentation and load pytorch weights for now

* Some fixes. Many tests are still failing but some are passing now.

- I have added TODO's for some of the hacks I made to unblock me
  and I will address them soon
- I have the processing_idefics.py hacked in my view to support TF temporarily

* Add ALL_LAYERNORM_LAYERS to match pytorch

* Revert "Add ALL_LAYERNORM_LAYERS to match pytorch"

This reverts commit 7e0a35119b4d7a6284d04d8c543fba1b29e573c9 as it
is not needed in the tf implementation.

* Fix freeze_relevant_params()

* Some more fixes

* Fix test_attention_outputs

* Add tf stuff to processing_idefics.py

processing_idefics.py supports both pytorch and tf now.

test_processor_idefics.py for pytorch is passing, so i didn't break anything
but still some issues with tf. I also need to add tf tests in
test_processor_idefics.py.

* Pass return_tensors to image processing code and fix test

* Pass return_tensors to the image processor __init__

* Fix several test cases

- Make input to some of the forward pass of type `TFModelInputType`
- Decorate main layer forward pass with `@unpack_inputs`
- Decorate main layer with `@keras_serializable`
- Pass `inputs` to TFIdeficsModel

* Some more fixes forgotten in last commit

* Fix processing code and vision_tf.py

* Fix perceiver bug

* Import from

* Auto-add build() methods + style pass

* Fix build() errors due to `None` being passed as shape to some layers

* Change name in TFIdeficsForVisionText2Text to attribute in IdeficsForVisionText2Text

* Fix pytorch weights load for tf2

There were a lot of `name=` missing in weight initialization code.

* Attempt to fix CI

* Add back accidently removed line

* Remove torch-specific stuff from the TF test file

* make fix-copies, make style, remove autotranslated files

* Fixes to imports/docstrings

* Let's try the from future import in desperation

* Fix the core random_attention_mask fn to match the torch/flax behaviour

* Clean random_attention_mask up correctly

* Remove torch-only test

* Fix loss shape, couple of nits

* make style

* Don't test for OOB embeddings because IDEFICS uses those deliberately

* Fix loss computation to handle masking

* Fix test failures when flattening

* Fix some test failures

- Add cross attention gate which was missing and wasn't being passed arround
- Fix overwriting of image_attention_mask due to hack I had for dummy inputs

* Add a proper stateless scaled_dot_product_attention

* make style

* Adding missing attribute from the PyTorch version

* Small cleanups to decoupledlinearlayer in case that helps

* Pass epsilon to LayerNormalization

* Attemp to fix pytorch weight cross-loading for TFIdeficsEmbedding

* Fix a bug in TFIdeficsGatedCrossAttentionLayer

* Patching up build() methods

* Constant self.inv_freq

* Constant self.inv_freq

* First working version

The TF implementation works now, there was a bug in the TFIdeficsDecoupledLinear
where the weights were mis-intialized (in_features,out_features)
when it should be: (out_features, in_features)

I have tested this so far with tiny-random and idefics-9b-instruct
and gives correct output.

I also dumped the final outputs for both pytorch and TF
and they are identical.

* Fix some test failures

* remove print statement

* Fix return_tensors

* Fix CI test failure check_code_quality

* Attempt to fix CI failures by running `make fixup`

The hardcoded IDs in test_modeling_tf_idefics.py are for the integration
test and makes that file unreadable and should probably be moved to a seperate file.

* Attempt to fix tests_pr_documentation_tests

* Fix a test failure in test_image_processing_idefics.py

* Fix test test_pt_tf_model_equivalence

* Fix a few failures

* Tiny fix

* Some minor fixes

* Remove a duplicate test

* Override a few test failures for IDEFICS

- `test_keras_save_load` is passing now
- `test_compile_tf_model` is still failing

* Fix processing_idefics.py after rebase

* Guard import keras with is_tf_available

* fix check code quality

* fix check code quality

* Minor fixes

* Skip test_save_load temporarily

This test passed on my local box but fails on the CI, skipping
for now to see if there are other remaining failures on the CI.

* Run `ruff format tests src utils`

* Fix last failing test, `test_compile_tf_model`

* Add fixes for vision_tf.py

I forgot to add this file in last commit.

* Minor fixes

* Replace "<<<" with "<<" for doc tests

IDEFICS-9B is too big for doctest runner, so don't run it there

* Make code more readable

* Fix bug after code review

I added a layer_norm_eps to IdeficsConfig but I don't even need it
since the vision config has a layer_norm_eps.

* Fix after code review

Use original code tokenizer.convert_tokens_to_ids

* Keep PyTorch as the default return_tensors

* Fixes to modeling_tf after code review

* Fixes from code review

- Remove all references of `TF_IDEFICS_PRETRAINED_MODEL_ARCHIVE_LIST`
- Pass 1e-5 to LayerNormalization in perceiver

* Run ruff

* Undo a change

* Refactor processing code after Matt's suggestion

* Remove TODO's that aren't needed anymore

* For pytorch, Use original pytorch processing code from main

Since this PR is a TF port it shouldn't make any modifications
to pytorch IDEFICS code. This changes undo's the pytorch processing
modifications I made and uses original code from main.

* Update tests/models/idefics/test_modeling_idefics.py

* Update tests/models/idefics/test_modeling_tf_idefics.py

* Add missing imports for is_pt_tf_cross_test

* [DO NOT MERGE]: This is a commit for debugging and will be reverted

The cross test `test_pt_tf_model_equivalence` passes locally but
fails when running on the CI. This commit is to help debug that
and will be reverted.

* Revert "[DO NOT MERGE]: This is a commit for debugging and will be reverted"

This reverts commit 8f0d709ec5bd46685fb0b4259d914ffee794875b.

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* [DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 998cc38b8c3d313bf5e5eb55a7f5b7b881897b89.

* Revert "[DO NOT MERGE]: This commit is for debugging a CI failure and will be reverted"

This reverts commit 1c695ac4219c4ae4d39b330b01744dc27deb7dd4.

* Don't skip test_save_load

IIRC test_save_load was also failing on the CI but not on my local
box, it might be easier to debug that on the CI first than the cross tests

* Debugging commit, will be reverted

* Revert "Debugging commit, will be reverted"

This reverts commit 8eafc8e41e20c4e95a3a90834f06a6e9f445e2d5.

* Override `test_save_load` and push model to save

Maybe this will help me repro this weird bug

* pass my repo_id

* add endpoint

* Pass a temp (write) token just for this CI

* Undo last few commits, still pushing to hub for model debugging

The issue seems to be with save_pretrained(),  when I looked at the model saved
from the CI test failure it is basically empty and has no weights.
`self.save_weights(..)` seems to be failing in save_pretrained but needs
more debugging

* Add logging to modeling tf utils, will be reverted just for debugging

* Debugging, will revert

* Revert "Debugging, will revert"

This reverts commit 9d0d3075fb7c82d8cde3a5c76bc8f3876c5c55d3.

* Revert "Add logging to modeling tf utils, will be reverted just for debugging"

This reverts commit 774b6b7b1c17b3ce5d7634ade768f2f686cee617.

* Remove `test_save_load`

The CI failures are gone after my latest rebase, no idea why
but I was still saving the model to my hub on HF and the tf_model.h5
file now has everything.

* Run make fix-copies

* Run ruff format tests src utils

* Debugging commit, will be reverted

* Run ruff, also trigger CI run

* Run ruff again

* Undo debugging commit

---------

Co-authored-by: Matt <[email protected]>
Co-authored-by: Matt <[email protected]>
  • Loading branch information
3 people authored May 13, 2024
1 parent de2f722 commit 9430635
Show file tree
Hide file tree
Showing 17 changed files with 3,392 additions and 49 deletions.
2 changes: 1 addition & 1 deletion docs/source/en/index.md
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ Flax), PyTorch, and/or TensorFlow.
| [HerBERT](model_doc/herbert) ||||
| [Hubert](model_doc/hubert) ||||
| [I-BERT](model_doc/ibert) ||||
| [IDEFICS](model_doc/idefics) || ||
| [IDEFICS](model_doc/idefics) || ||
| [Idefics2](model_doc/idefics2) ||||
| [ImageGPT](model_doc/imagegpt) ||||
| [Informer](model_doc/informer) ||||
Expand Down
10 changes: 10 additions & 0 deletions docs/source/en/model_doc/idefics.md
Original file line number Diff line number Diff line change
Expand Up @@ -52,6 +52,16 @@ To train a new IDEFICS model from scratch use the m4 codebase (a link will be pr
[[autodoc]] IdeficsForVisionText2Text
- forward

## TFIdeficsModel

[[autodoc]] TFIdeficsModel
- call

## TFIdeficsForVisionText2Text

[[autodoc]] TFIdeficsForVisionText2Text
- call

## IdeficsImageProcessor

[[autodoc]] IdeficsImageProcessor
Expand Down
14 changes: 14 additions & 0 deletions src/transformers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3862,6 +3862,15 @@
"TFHubertPreTrainedModel",
]
)

_import_structure["models.idefics"].extend(
[
"TFIdeficsForVisionText2Text",
"TFIdeficsModel",
"TFIdeficsPreTrainedModel",
]
)

_import_structure["models.layoutlm"].extend(
[
"TFLayoutLMForMaskedLM",
Expand Down Expand Up @@ -7905,6 +7914,11 @@
TFHubertModel,
TFHubertPreTrainedModel,
)
from .models.idefics import (
TFIdeficsForVisionText2Text,
TFIdeficsModel,
TFIdeficsPreTrainedModel,
)
from .models.layoutlm import (
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
Expand Down
2 changes: 2 additions & 0 deletions src/transformers/models/auto/modeling_tf_auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@
("gptj", "TFGPTJModel"),
("groupvit", "TFGroupViTModel"),
("hubert", "TFHubertModel"),
("idefics", "TFIdeficsModel"),
("layoutlm", "TFLayoutLMModel"),
("layoutlmv3", "TFLayoutLMv3Model"),
("led", "TFLEDModel"),
Expand Down Expand Up @@ -112,6 +113,7 @@
("funnel", "TFFunnelForPreTraining"),
("gpt-sw3", "TFGPT2LMHeadModel"),
("gpt2", "TFGPT2LMHeadModel"),
("idefics", "TFIdeficsForVisionText2Text"),
("layoutlm", "TFLayoutLMForMaskedLM"),
("lxmert", "TFLxmertForPreTraining"),
("mobilebert", "TFMobileBertForPreTraining"),
Expand Down
30 changes: 29 additions & 1 deletion src/transformers/models/idefics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,13 @@
# limitations under the License.
from typing import TYPE_CHECKING

from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)


_import_structure = {"configuration_idefics": ["IdeficsConfig"]}
Expand All @@ -39,6 +45,17 @@
]
_import_structure["processing_idefics"] = ["IdeficsProcessor"]

try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_tf_idefics"] = [
"TFIdeficsForVisionText2Text",
"TFIdeficsModel",
"TFIdeficsPreTrainedModel",
]

if TYPE_CHECKING:
from .configuration_idefics import IdeficsConfig
Expand All @@ -64,6 +81,17 @@
)
from .processing_idefics import IdeficsProcessor

try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_idefics import (
TFIdeficsForVisionText2Text,
TFIdeficsModel,
TFIdeficsPreTrainedModel,
)

else:
import sys
Expand Down
6 changes: 3 additions & 3 deletions src/transformers/models/idefics/image_processing_idefics.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,8 +92,9 @@ def preprocess(
image_mean: Optional[Union[float, List[float]]] = None,
image_std: Optional[Union[float, List[float]]] = None,
transform: Callable = None,
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
**kwargs,
) -> TensorType.PYTORCH:
) -> TensorType:
"""
Preprocess a batch of images.
Expand Down Expand Up @@ -162,7 +163,6 @@ def preprocess(
images = [self.rescale(image=image, scale=1 / 255) for image in images]
images = [self.normalize(x, mean=image_mean, std=image_std) for x in images]
images = [to_channel_dimension_format(x, ChannelDimension.FIRST) for x in images]
# TODO: this converts to torch tensors - switch to convert_to_tensors once it becomes available
images = BatchFeature(data={"pixel_values": images}, tensor_type=TensorType.PYTORCH)["pixel_values"]
images = BatchFeature(data={"pixel_values": images}, tensor_type=return_tensors)["pixel_values"]

return images
Loading

0 comments on commit 9430635

Please sign in to comment.