-
Notifications
You must be signed in to change notification settings - Fork 770
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Finish chapter2/1 * Update _toctree.yml
- Loading branch information
Showing
2 changed files
with
25 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# บทนำ | ||
|
||
อย่างที่คุณเห็นใน [Chapter 1](/course/chapter1), โดยปกติแล้วโมเดล Transformer นั้นจะมีขนาดใหญ่มาก การเทรนและการใช้งานโมเดลเหล่านี้ที่มีตัวแปร (parameters) เป็นล้านไปจนถึง *หมื่นล้าน* ตัวแปรนั้นเป็นเรื่องที่ค่อนข้างซับซ้อน นอกจากนั้นแล้วการที่มีโมเดลใหม่ๆปล่อยออกมาเกือบทุกวันและแต่ละโมเดลก็มีวิธีการสร้าง (implementation) เป็นของตัวเอง ดังนั้นการจะลองทุกโมเดลนั้นไม่ใช่เรื่องที่ง่ายเลย | ||
🤗 Transformers library สร้างขึ้นมาเพื่อแก้ปัญหานี้ จุดประสงค์ก็คือ การทำให้ไม่ว่าจะโมเดล Transformer ใดก็ตามสามารถโหลด, เทรน, และบันทึก ได้ด้วยการใช้ API เพียงอันเดียว จุดเด่นหลักๆของ library ประกอบด้วย | ||
|
||
- **ใช้งานง่าย**: การดาวน์โหลด, การโหลด, และการใช้งานโมเดล NLP ที่ประสิทธิภาพดีที่สุด (state-of-the-art) สำหรับการอนุมาน (inference) นั้นสามารถทำได้ด้วยโค้ดเพียง 2 บรรทัด | ||
- **ความยืดหยุ่น**: โดยแก่นแท้แล้วทุกโมเดลนั้นก็เป็นเพียคลาส `nn.Module` ง่ายๆของ PyTorch หรือ `tf.keras.Model` ของ TensorFlow และสามารถถูกจัดการได้เหมือนโมเดลอื่นๆ ใน machine learning (ML) frameworks นั้นๆ | ||
- **ความเรียบง่าย**: การประกาศ abstractions ใดๆข้ามไปมาใน libraries นั้นน้อยมากๆ แนวคิดหลัก (core concept) ก็คือ "ทุกอย่างอยู่ในไฟล์เดียว (All in one file)" เช่น ขั้นตอนการเรียนรู้ของโมเดลใน forward pass นั้นสามารถประกาศทั้งหมดได้ในไฟล์เดียว ดังนั้นตัวโค้ดนั้นสามารถเป็นที่เข้าใจและแก้ไขได้ในตัวมันเอง | ||
|
||
จุดเด่นข้อสุดท้ายนี่เองที่ทำให้ 🤗 Transformers ต่างจาก ML libraries อื่นๆ โมเดลต่างๆไม่ได้ถูกสร้างขึ้นมาจากโมดูลต่างๆที่ต้องแชร์ข้ามไฟล์กันไปมา แต่กลับกัน แต่ละโมเดลจะมี layers ของตัวเอง | ||
นอกจากจะทำให้โมเดลเข้าถึงและเข้าใจได้ง่ายแล้ว ยังทำให้คุณสามารถทดลองโมเดลๆหนึ่งโดยที่ไม่กระทบโมเดลอื่นๆ | ||
|
||
บทนี้จะเริ่มด้วยตัวอย่างแบบ end-to-end ซึ่งเราจะใช้โมเดลและ tokenizer ร่วมกันเพื่อทำซ้ำ(เลียนแบบ) ฟังก์ชัน `pipeline()` จากที่เรียนใน [Chapter 1](/course/chapter1) หลังจากนั้นเราจะมาเรียนเกี่ยวกับ API ของโมเดล โดยเราจะเจาะลึกในคลาสของโมเดลและการตั้งค่า (configuration) และจะแสดงวิธีการโหลดโมเดลและกระบวนการที่โมเดลทำการทำนายผลจากชุดข้อมูลเชิงตัวเลข ว่าทำอย่างไร | ||
|
||
หลังจากนั้นเราจะไปดูกันที่ tokenizer API ซึ่งเป็นอีกหนึ่งส่วนประกอบหลักของฟังก์ชัน `pipeline()`, Tokenizers จะรับผิดชอบการประมวลขั้นแรกและขั้นสุดท้าย ซึ่งก็คือ การแปลงข้อมูลที่เป็นข้อความให้เป็นข้อมูลเชิงตัวเลข เพื่อใช้กับ neural network, และการแปลงข้อมูลกลับไปเป็นตัวอักษร ในกรณีที่จำเป็น และสุดท้ายเราจะแสดงวิธีการจัดการกับการส่งข้อความทีละหลายๆประโยคแบบที่เตรียมไว้เป็นชุดๆ (batch) ไปยังโมเดล และปิดท้ายด้วยฟังก์ชัน `tokenizer()` | ||
|
||
<Tip> | ||
⚠️ เพื่อให้ได้ประโยชน์สูงสุดจากคุณลักษณะเด่นทั้งหมดที่มีใน Model Hub และ 🤗 Transformers, เราแนะนำให้คุณ <a href="https://huggingface.co/join">สร้างบัญชี</a>. | ||
</Tip> |