-
Notifications
You must be signed in to change notification settings - Fork 776
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Chapter 2 Section 1 Bengali Translation (#72) (#168) * [TH] Chapter 6 Section 1 and 2 (#171) Co-authored-by: Suteera <[email protected]> * [FA] CH1 / P1-2 (#142) * Spanish Chapter 3: sections 1 & 2 (#162) * fix typos in bpe, wordpiece, unigram (#166) * [FR] French Review (#186) * Part 7: Training a causal... fixes (#179) * typo & error mitigation * consistency * Trainer.predict() returns 3 fields * ran make style * [TR] Translated Chapter 1.6 🤗 (#185) * added chapter 1/6 to _toctree.yml * [TR] Translated Chapter 1.6 🤗 Co-authored-by: Avishek Das <[email protected]> Co-authored-by: Suteera Seeha <[email protected]> Co-authored-by: Suteera <[email protected]> Co-authored-by: Saeed Choobani <[email protected]> Co-authored-by: Fermin Ordaz <[email protected]> Co-authored-by: Kerem Turgutlu <[email protected]> Co-authored-by: lbourdois <[email protected]> Co-authored-by: Sebastian Sosa <[email protected]> Co-authored-by: tanersekmen <[email protected]>
- Loading branch information
1 parent
19d3c25
commit 679bdbf
Showing
88 changed files
with
11,843 additions
and
9,754 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
# ভূমিকা | ||
|
||
[অধ্যায় ১](/course/bn/chapter1) এ আমরা দেখে এসেছি যে Transformer মডেলগুলো সাধারণত অনেক বড় হয়। লাখ-লাখ কোটি-কোটি প্যারামিটার সম্বলিত এই মডেল গুলো কে ট্রেনিং এবং ডেপ্লয় করা বেশ জটিল ও কষ্টসাধ্য একটা কাজ। তাছাড়াও প্রায় প্রতিদিনই নতুন নতুন মডেল রিলিজ হচ্ছে এবং সবগুলোরই নিজস্ব বাস্তবায়ন রয়েছে। এই সবকিছু একসাথে এপ্লাই করা খুব সহজ একটা কাজ নয়। | ||
|
||
এই 🤗 Transformers লাইব্রেরিটা বানানো হয়েছে এই সমস্যাগুলো সমাধান করার জন্য। এর আসল উদ্দেশ্য হলো এমন একটি API প্রদান করা যার মাধ্যমে যেকোনো Transformer মডেলকে লোড করা, ট্রেইন করা কিংবা সেভ করা যাবে। লাইব্রেরিটির আসল ফিচারগুলো হলঃ | ||
|
||
- **সহজে ব্যবহারযোগ্য**: ডাউনলোড করা, লোড করা এবং যেকোন state-of-the-art মডেল দিয়ে inference করা যাবে মাত্র দুই লাইনের কোড দিয়ে। | ||
- **ফ্লেক্সিবিলিটি**: সবগুলো Transformer মডেলই আসলে PyTorch `nn.Module` অথবা TensorFlow `tf.keras.Model` ক্লাস , আর অন্য যেকোনো মডেলের মতোই এদেরকে তাদের নিজ নিজ মেশিন লার্নিং ফ্রেমওয়ার্ক এ সহজেই পরিচালনা করা যায়। | ||
|
||
- **সরলতা**: লাইব্রেরি জুড়ে খুব কমই বিমূর্ততা তৈরি করা হয়। "All in one file" এমন একটি ধারণাঃ একটা মডেলের পুরো Forward Pass কে সম্পূর্ণরূপে একটি সিঙ্গেল ফাইলে নিয়ে আসা হয়েছে, যাতে করে কোডটি সহজেই বুঝা ও মডিফাই করা যায়। | ||
|
||
এই শেষ বৈশিষ্ট্যটি(সরলতা) 🤗 ট্রান্সফরমারকে অন্যান্য ML লাইব্রেরি থেকে বেশ আলাদা করে তোলে। এখানে মডেলগুলি কোনো মডিউল এর উপর নির্মিত নয় যেগুলো ফাইল জুড়ে শেয়ার্ড অবস্থায় থাকে; বরংচ, প্রতিটি মডেলের নিজস্ব স্তর(Layer)রয়েছে। মডেলগুলিকে আরও সহজলভ্য এবং বোধগম্য করার পাশাপাশি, 🤗 Transformers আপনাকে অন্য মডেলকে প্রভাবিত না করে সহজেই একটি মডেলে নিয়ে এক্সপেরিমেন্ট করতে দেয়৷ | ||
|
||
এই অধ্যায়টি একটি পূর্নাঙ্গ উদাহরন দিয়ে শুরু হবে, যেখানে [অধ্যায় ১](/course/bn/chapter1) এ উল্লিখিত `pipeline()` ফাংশনটি প্রতিলিপি করতে আমরা একটি মডেল এবং একটি টোকেনাইজার একসাথে ব্যবহার করব। এর পরে, আমরা মডেল API নিয়ে আলোচনা করব: আমরা মডেল এবং কনফিগারেশন ক্লাসগুলির খুঁটিনাটি দেখব এবং আপনাকে দেখাব কীভাবে একটি মডেল লোড করতে হয় এবং কীভাবে এটি সংখ্যাসূচক ইনপুটগুলিকে প্রক্রিয়া করে আউটপুট প্রেডিক্ট করা যায়। | ||
|
||
তারপরে আমরা টোকেনাইজার API দেখব, যা `pipeline()` ফাংশনের অন্য একটি প্রধান উপাদান। টোকেনাইজার জিনিসটা প্রথম ও শেষ প্রসেসিং স্টেপগুলোতে মেইনলি কাজে লাগে, নিউরাল নেটওয়ার্কের জন্য টেক্সট ডাটা থেকে সংখ্যাসূচক ইনপুটে রূপান্তর এবং পরে আবার প্রয়োজন অনুযায়ী সংখ্যাসূচক ডাটা থেকে টেক্সট ডাটাতে রূপান্তর করার সময়। পরিশেষে, আমরা আপনাকে দেখাব কিভাবে ব্যাচের মাধ্যমে একাধিক বাক্যকে একটি মডেলে পাঠানো যায়। তারপরে আরেকবার হাই-লেভেলে `tokenizer()` ফাংশনটিকে একনজরে দেখার মাধ্যমে পুরো অধ্যায়ের ইতি টানব। | ||
|
||
<Tip> | ||
⚠️ Model Hub এবং 🤗 Transformers এর সাথে উপলব্ধ সমস্ত বৈশিষ্ট্যগুলি থেকে উপকৃত হওয়ার জন্য, আমরা সাজেস্ট করি <a href="https://huggingface.co/join">এখানে একটি একাউন্ট তৈরি করার জন্যে।</a>. | ||
</Tip> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
<FrameworkSwitchCourse {fw} /> | ||
|
||
# Introducción | ||
|
||
En el [Capítulo 2](/course/chapter2) exploramos como usar los tokenizadores y modelos preentrenados para realizar predicciones. Pero qué tal si deseas ajustar un modelo preentrenado con tu propio conjunto de datos ? | ||
|
||
{#if fw === 'pt'} | ||
* Como preparar un conjunto de datos grande desde el Hub. | ||
* Como usar la API de alto nivel del entrenador para ajustar un modelo. | ||
* Como usar un bucle personalizado de entrenamiento. | ||
* Como aprovechar la Accelerate library 🤗 para fácilmente ejecutar el bucle personalizado de entrenamiento en cualquier configuración distribuida. | ||
|
||
{:else} | ||
* Como preparar un conjunto de datos grande desde el Hub. | ||
* Como usar Keras para ajustar un modelo. | ||
* Como usar Keras para obtener predicciones. | ||
* Como usar una métrica personalizada. | ||
|
||
{/if} | ||
|
||
Para subir tus puntos de control (*checkpoints*) en el Hub de Hugging Face, necesitas una cuenta en huggingface.co: [crea una cuenta](https://huggingface.co/join) |
Oops, something went wrong.