-
Notifications
You must be signed in to change notification settings - Fork 50
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
ENH: decimation4 is added to the networks
- Loading branch information
Showing
1 changed file
with
161 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import logging | ||
import numpy as np | ||
import tensorflow as tf | ||
import functions.tf_utils as tfu | ||
|
||
|
||
def network(images, bn_training, detailed_summary=False, use_keras=False): | ||
common = {'padding': 'valid', 'activation': 'ReLu', 'bn_training': bn_training, 'use_keras': use_keras} | ||
with tf.variable_scope('AdditiveNoise'): | ||
images = tf.cond(bn_training, | ||
lambda: images + tf.round(tf.random_normal(tf.shape(images), | ||
mean=tf.round(tf.random_normal([1], mean=0, stddev=2, dtype=tf.float32)), | ||
stddev=2, dtype=tf.float32)), | ||
lambda: images) | ||
|
||
with tf.variable_scope('SplitImages'): | ||
im = images[:, :, :, :, 0, tf.newaxis] | ||
im_deformed = images[:, :, :, :, 1, tf.newaxis] | ||
|
||
with tf.variable_scope('DownSampling_R4'): | ||
kernel_bspline_r4 = tfu.kernels.kernel_bspline_r4() | ||
im_r4 = tf.nn.convolution(im, kernel_bspline_r4, 'VALID', strides=(4, 4, 4)) | ||
im_deformed_r4 = tf.nn.convolution(im_deformed, kernel_bspline_r4, 'VALID', strides=(4, 4, 4)) | ||
images_r4 = tf.concat([im_r4, im_deformed_r4], axis=-1) | ||
|
||
with tf.variable_scope('DownSampling_R2'): | ||
kernel_bspline_r2 = tfu.kernels.kernel_bspline_r2() | ||
margin_r2 = 19 | ||
im_r2 = tf.nn.convolution(im[:, margin_r2:-margin_r2, margin_r2:-margin_r2, margin_r2:-margin_r2, :], kernel_bspline_r2, 'VALID', strides=(2, 2, 2)) | ||
im_deformed_r2 = tf.nn.convolution(im_deformed[:, margin_r2:-margin_r2, margin_r2:-margin_r2, margin_r2:-margin_r2, :], kernel_bspline_r2, 'VALID', strides=(2, 2, 2)) | ||
images_r2 = tf.concat([im_r2, im_deformed_r2], axis=-1) | ||
|
||
with tf.variable_scope('DownSampling_R1'): | ||
margin_r1 = 34 | ||
images_r1 = tf.concat([im[:, margin_r1:-margin_r1, margin_r1:-margin_r1, margin_r1:-margin_r1, :], | ||
im_deformed[:, margin_r1:-margin_r1, margin_r1:-margin_r1, margin_r1:-margin_r1, :]], | ||
axis=-1) | ||
|
||
with tf.variable_scope('R1'): | ||
conv1_r1 = tfu.layers.conv3d(images_r1, 16, [3, 3, 3], padding='same', activation='ReLu', bn_training=bn_training, scope='conv1_R1', use_keras=use_keras) | ||
conv2_r1 = tfu.layers.conv3d(conv1_r1, 20, [3, 3, 3], scope='conv2_R1', **common) | ||
conv3_r1 = tfu.layers.conv3d(conv2_r1, 24, [3, 3, 3], scope='conv3_R1', **common) | ||
conv4_r1 = tfu.layers.conv3d(conv3_r1, 28, [3, 3, 3], scope='conv4_R1', **common) | ||
conv5_r1 = tfu.layers.conv3d(conv4_r1, 32, [3, 3, 3], scope='conv5_R1', **common) | ||
conv6_r1 = tfu.layers.conv3d(conv5_r1, 32, [3, 3, 3], scope='conv6_R1', **common) | ||
conv7_r1 = tfu.layers.conv3d(conv6_r1, 32, [3, 3, 3], scope='conv7_R1', **common) | ||
|
||
margin_r2_up = 5 | ||
with tf.variable_scope('R2'): | ||
conv1_r2 = tfu.layers.conv3d(images_r2, 20, [3, 3, 3], padding='same', activation='ReLu', bn_training=bn_training, scope='conv2_R1', use_keras=use_keras) | ||
conv2_r2 = tfu.layers.conv3d(conv1_r2, 30, [3, 3, 3], scope='conv2_R2', **common) | ||
conv3_r2 = tfu.layers.conv3d(conv2_r2, 32, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv3_R2', **common) | ||
conv4_r2 = tfu.layers.conv3d(conv3_r2, 34, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv4_R2', **common) | ||
conv5_r2 = tfu.layers.conv3d(conv4_r2, 36, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv5_R2', **common) | ||
conv6_r2 = tfu.layers.conv3d(conv5_r2, 38, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv6_R2', **common) | ||
conv7_r2 = tfu.layers.upsampling3d(conv6_r2, scope='conv7_R2', interpolator='trilinear') | ||
concat_r2 = tf.concat([conv7_r2, conv1_r1[:, margin_r2_up:-margin_r2_up, margin_r2_up:-margin_r2_up, margin_r2_up:-margin_r2_up, :]], axis=-1) | ||
conv8_r2 = tfu.layers.conv3d(concat_r2, 40, [3, 3, 3], scope='conv8_R2', **common) | ||
|
||
margin_r4_up1 = 1 | ||
margin_r4_up2 = 5 | ||
with tf.variable_scope('R4'): | ||
conv1_r4 = tfu.layers.conv3d(images_r4, 30, [3, 3, 3], scope='conv1_R4', **common) | ||
conv2_r4 = tfu.layers.conv3d(conv1_r4, 40, [3, 3, 3], scope='conv2_R4', **common) | ||
conv3_r4 = tfu.layers.conv3d(conv2_r4, 42, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv3_R4', **common) | ||
conv4_r4 = tfu.layers.conv3d(conv3_r4, 44, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv4_R4', **common) | ||
conv5_r4 = tfu.layers.conv3d(conv4_r4, 46, [3, 3, 3], dilation_rate=(2, 2, 2), scope='conv5_R4', **common) | ||
conv6_r4 = tfu.layers.upsampling3d(conv5_r4, scope='conv6_R4', interpolator='trilinear') | ||
concat1_r4 = tf.concat([conv6_r4, conv5_r2[:, margin_r4_up1:-margin_r4_up1, margin_r4_up1:-margin_r4_up1, margin_r4_up1:-margin_r4_up1, :]], axis=-1) | ||
conv7_r4 = tfu.layers.conv3d(concat1_r4, 46, [3, 3, 3], scope='conv7_R4', **common) | ||
conv8_r4 = tfu.layers.upsampling3d(conv7_r4, scope='conv8_R4', interpolator='trilinear') | ||
concat2_r4 = tf.concat([conv8_r4, conv1_r1[:, margin_r4_up2:-margin_r4_up2, margin_r4_up2:-margin_r4_up2, margin_r4_up2:-margin_r4_up2, :]], axis=-1) | ||
conv9_r4 = tfu.layers.conv3d(concat2_r4, 40, [3, 3, 3], scope='conv9_R4', **common) | ||
|
||
with tf.variable_scope('Merged'): | ||
conv_concat = tf.concat([conv7_r1, conv8_r2, conv9_r4], 4) | ||
|
||
with tf.variable_scope('FullyConnected'): | ||
conv7 = tfu.layers.conv3d(conv_concat, 120, [3, 3, 3], padding='valid', activation='ELu', bn_training=bn_training, scope='conv1_FC', use_keras=use_keras) | ||
conv8 = tfu.layers.conv3d(conv7, 50, [3, 3, 3], padding='valid', activation='ELu', bn_training=bn_training, scope='conv2_FC', use_keras=use_keras) | ||
|
||
with tf.variable_scope('DVF'): | ||
dvf_regnet = tfu.layers.conv3d(conv8, 3, [1, 1, 1], padding="valid", activation=None, bn_training=None, scope='DVF_RegNet', use_keras=use_keras) | ||
|
||
if detailed_summary: | ||
for i in range(1, 8): | ||
tensor_name = 'conv'+str(i)+'_R1' | ||
tfu.summary.tensor2summary(eval(tensor_name.lower()), tensor_name, scope='DetailedSummaryImages_R1_conv'+str(i), selected_slices=1) | ||
for i in range(1, 9): | ||
tensor_name = 'conv' + str(i) + '_R2' | ||
tfu.summary.tensor2summary(eval(tensor_name.lower()), tensor_name, scope='DetailedSummaryImages_R2_conv'+str(i), selected_slices=1) | ||
for i in range(1, 10): | ||
tensor_name = 'conv'+str(i)+'_R4' | ||
tfu.summary.tensor2summary(eval(tensor_name.lower()), tensor_name, scope='DetailedSummaryImages_R4_conv'+str(i), selected_slices=1) | ||
tfu.summary.tensor2summary(conv7, 'conv7', scope='DetailedSummaryImages_conv7', selected_slices=1) | ||
tfu.summary.tensor2summary(conv8, 'conv8', scope='DetailedSummaryImages_conv8', selected_slices=1) | ||
|
||
return dvf_regnet | ||
|
||
|
||
def raidus_train(): | ||
""" | ||
please note that the side of the patch is equal to 2*r_input+1 | ||
:return: | ||
""" | ||
r_input = 52 | ||
r_output = 10 | ||
return r_input, r_output | ||
|
||
|
||
def maximum_radius_test(gpu_memory=None, number_of_gpu=None): | ||
""" | ||
:return: | ||
""" | ||
if gpu_memory is None and number_of_gpu is None: | ||
gpu_memory, number_of_gpu = tfu.client.read_gpu_memory() | ||
logging.info('GPU Memory={:.2f} Number of GPU={}'.format(gpu_memory, number_of_gpu)) | ||
if 10 <= gpu_memory < 11: | ||
r_input = 120 | ||
r_output = 78 | ||
elif 11 <= gpu_memory < 12: | ||
r_input = '!' | ||
r_output = '!' | ||
elif 12 <= gpu_memory < 16: | ||
r_input = 136 | ||
r_output = 94 | ||
return r_input, r_output | ||
|
||
|
||
def get_resize_unit(): | ||
""" | ||
Accepted value that you can add or subtract to the network radius. | ||
This is relevant to the number of max-pooling insided the network | ||
:return: resize_unit | ||
""" | ||
resize_unit = 4 | ||
return resize_unit | ||
|
||
|
||
def get_padto(): | ||
padto = None | ||
return padto | ||
|
||
|
||
if __name__ == '__main__': | ||
logging.basicConfig(level=logging.INFO) | ||
d_input, d_output = [2 * i + 1 for i in raidus_train()] | ||
use_keras = False | ||
print_all = True | ||
do_training = True | ||
|
||
network(tf.placeholder(tf.float32, shape=[None, d_input, d_input, d_input, 2]), | ||
tf.placeholder(tf.bool, name='bn_training'), use_keras=use_keras) | ||
logging.info('total number of variables %s' % (np.sum([np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()]))) | ||
if print_all: | ||
# gr = tf.get_default_graph() | ||
# for op in tf.get_default_graph().get_operations(): | ||
# logging.info(str(op.name)) | ||
logging.info('printint trainables \n---------------\n--------------\n-------------') | ||
for v in tf.trainable_variables(): | ||
logging.info(v) |