Wide Residual Networks realized by paddlepaddle
Resnet是近年来广为流行并证明十分有效的backbone网络,随着层数的不断加深,性能会持续提高。然而,随着网络越来越深,性能的提升程度持续下降,因此,训练非常深的resnet会面临“消失的特征复用”问题,从而使网络的收敛速度变得很慢。为解决此问题,WideResNet(简写为WRN)营运而生,该网络减少了网络的层数,但增加了网络的宽度,使得网络性能超过了当前很深很细的网络(如Resnet)。例如,一个简单的16层WRN,在精度和效率方面就超过了先前所有的深度resnet(包括一千层的深度resnet)。WRN在CIFAR,SVHN,COCO上达到了SOTA指标,在ImageNet上也有重要的性能提升。
参考文献:https://arxiv.org/abs/1605.07146
1、下载cifar10数据集,并解压至data目录下;
2、运行train.py