-
Notifications
You must be signed in to change notification settings - Fork 52
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Add Random instances for tuples #26
Comments
That sounds super reasonable. I'll talk about it with Dominic when we next I assume we probably don't need more Than size 6 or 10 tuples? :) On Thursday, April 23, 2015, Neil Mitchell [email protected] wrote:
|
My particular use case was for 4 tuples - specifically, I wanted to call |
@ndmitchell this is a good feature, i'll make it happen, see what i can do... how would you specify/what to talk about generating samples / intervals? |
(i'm amidst revisiting / generalizing the sampler api, though that wont happen for the next release, i presume you want every tuple value, not an "interval/range"? |
@cartazio I didn't really have any idea about what intervals should mean - but I guess between |
What is the status on this issue? Is there a chance that the pull-request will be merged and an update is published? |
Support for tuple sampling will be happening. Stay tuned
…On Tue, Apr 17, 2018 at 5:16 AM power-fungus ***@***.***> wrote:
What is the status on this issue? Is there a chance that the pull-request
will be merged and an update is published?
—
You are receiving this because you were mentioned.
Reply to this email directly, view it on GitHub
<#26 (comment)>, or mute
the thread
<https://github.com/notifications/unsubscribe-auth/AAAQwhM9iIYigK0tXQPKQ1CnLuYiCDPFks5tpbL4gaJpZM4EG2Sw>
.
|
Will this be happening soon? I am really looking forward to this feature. :-) |
author Alexey Kuleshevich <[email protected]> 1581472095 +0300 committer Leonhard Markert <[email protected]> 1590493894 +0200 This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
author Alexey Kuleshevich <[email protected]> 1581472095 +0300 committer Leonhard Markert <[email protected]> 1590493894 +0200 This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== MonadRandom ----------- This patch adds a class 'MonadRandom': -- | 'MonadRandom' is an interface to monadic pseudo-random number generators. class Monad m => MonadRandom g s m | g m -> s where {-# MINIMAL freezeGen,thawGen,(uniformWord32|uniformWord64) #-} type Frozen g = (f :: Type) | f -> g freezeGen :: g s -> m (Frozen g) thawGen :: Frozen g -> m (g s) uniformWord32 :: g s -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g s -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds Conceptually, in 'MonadRandom g s m', 'g s' is the type of the generator, 's' is the state type, and 'm' the underlying monad. Via the functional dependency 'g m -> s', the state type is determined by the generator and monad. 'Frozen' is the type of the generator's state "at rest". It is defined as an injective type family via 'f -> g', so there is no ambiguity as to which 'g' any 'Frozen g' belongs to. This definition is generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full 'MonadRandom Gen' instance. Four 'MonadRandom' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== StatefulGen ----------- This patch adds a class 'StatefulGen': -- | 'StatefulGen' is an interface to monadic pseudo-random number generators. class Monad m => StatefulGen g m where uniformWord32 :: g -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds In 'StatefulGen g m', 'g' is the type of the generator and 'm' the underlying monad. Four 'StatefulGen' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. FrozenGen --------- This patch also introduces a class 'FrozenGen': -- | 'FrozenGen' is designed for stateful pseudo-random number generators -- that can be saved as and restored from an immutable data type. class StatefulGen (MutableGen f m) m => FrozenGen f m where type MutableGen f m = (g :: Type) | g -> f freezeGen :: MutableGen f m -> m f thawGen :: f -> m (MutableGen f m) 'f' is the type of the generator's state "at rest" and 'm' the underlying monad. 'MutableGen' is defined as an injective type family via 'g -> f' so for any generator 'g', the type 'f' of its at-rest state is well-defined. Both 'StatefulGen' and 'FrozenGen' are generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full instances. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word8 | 14 | 0.03 | 422| | pure/uniform/Word16 | 13 | 0.03 | 375| | pure/uniform/Word32 | 21 | 0.03 | 594| | pure/uniform/Word64 | 42 | 0.03 | 1283| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int8 | 15 | 0.03 | 511| | pure/uniform/Int16 | 15 | 0.03 | 507| | pure/uniform/Int32 | 22 | 0.03 | 749| | pure/uniform/Int64 | 44 | 0.03 | 1405| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| | pure/uniform/CChar | 14 | 0.03 | 485| | pure/uniform/CSChar | 14 | 0.03 | 455| | pure/uniform/CUChar | 13 | 0.03 | 448| | pure/uniform/CShort | 14 | 0.03 | 473| | pure/uniform/CUShort | 13 | 0.03 | 457| | pure/uniform/CInt | 21 | 0.03 | 737| | pure/uniform/CUInt | 21 | 0.03 | 742| | pure/uniform/CLong | 43 | 0.03 | 1544| | pure/uniform/CULong | 42 | 0.03 | 1460| | pure/uniform/CPtrdiff | 43 | 0.03 | 1494| | pure/uniform/CSize | 43 | 0.03 | 1475| | pure/uniform/CWchar | 22 | 0.03 | 785| | pure/uniform/CSigAtomic | 21 | 0.03 | 749| | pure/uniform/CLLong | 43 | 0.03 | 1554| | pure/uniform/CULLong | 42 | 0.03 | 1505| | pure/uniform/CIntPtr | 43 | 0.03 | 1476| | pure/uniform/CUIntPtr | 42 | 0.03 | 1463| | pure/uniform/CIntMax | 43 | 0.03 | 1535| | pure/uniform/CUIntMax | 42 | 0.03 | 1493| API changes =========== StatefulGen ----------- This patch adds a class 'StatefulGen': -- | 'StatefulGen' is an interface to monadic pseudo-random number generators. class Monad m => StatefulGen g m where uniformWord32 :: g -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds In 'StatefulGen g m', 'g' is the type of the generator and 'm' the underlying monad. Four 'StatefulGen' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. FrozenGen --------- This patch also introduces a class 'FrozenGen': -- | 'FrozenGen' is designed for stateful pseudo-random number generators -- that can be saved as and restored from an immutable data type. class StatefulGen (MutableGen f m) m => FrozenGen f m where type MutableGen f m = (g :: Type) | g -> f freezeGen :: MutableGen f m -> m f thawGen :: f -> m (MutableGen f m) 'f' is the type of the generator's state "at rest" and 'm' the underlying monad. 'MutableGen' is defined as an injective type family via 'g -> f' so for any generator 'g', the type 'f' of its at-rest state is well-defined. Both 'StatefulGen' and 'FrozenGen' are generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full instances. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.10' (GHC-8.2) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| API changes =========== StatefulGen ----------- This patch adds a class 'StatefulGen': -- | 'StatefulGen' is an interface to monadic pseudo-random number generators. class Monad m => StatefulGen g m where uniformWord32 :: g -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds In 'StatefulGen g m', 'g' is the type of the generator and 'm' the underlying monad. Four 'StatefulGen' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. FrozenGen --------- This patch also introduces a class 'FrozenGen': -- | 'FrozenGen' is designed for stateful pseudo-random number generators -- that can be saved as and restored from an immutable data type. class StatefulGen (MutableGen f m) m => FrozenGen f m where type MutableGen f m = (g :: Type) | g -> f freezeGen :: MutableGen f m -> m f thawGen :: f -> m (MutableGen f m) 'f' is the type of the generator's state "at rest" and 'm' the underlying monad. 'MutableGen' is defined as an injective type family via 'g -> f' so for any generator 'g', the type 'f' of its at-rest state is well-defined. Both 'StatefulGen' and 'FrozenGen' are generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full instances. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.8' (GHC-7.10) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
This patch is mostly backwards compatible. See "Breaking Changes" below for the full list of backwards incompatible changes. This patch fixes quality and performance issues, addresses additional miscellaneous issues, and introduces a monadic API. Issues addressed ================ Priority issues fixed in this patch: - Title: "The seeds generated by split are not independent" Link: haskell#25 Fixed: changed algorithm to SplitMix, which provides a robust 'split' operation - Title: "Very low throughput" Link: haskell#51 Fixed: see "Performance" below Additional issues addressed in this patch: - Title: "Add Random instances for tuples" Link: haskell#26 Addressed: added 'Uniform' instances for up to 6-tuples - Title: "Add Random instance for Natural" Link: haskell#44 Addressed: added 'UniformRange' instance for 'Natural' - Title: "incorrect distribution of randomR for floating-point numbers" Link: haskell#53 Addressed: see "Regarding floating-point numbers" below - Title: "System/Random.hs:43:1: warning: [-Wtabs]" Link: haskell#55 Fixed: no more tabs - Title: "Why does random for Float and Double produce exactly 24 or 53 bits?" Link: haskell#58 Fixed: see "Regarding floating-point numbers" below - Title: "read :: StdGen fails for strings longer than 6" Link: haskell#59 Addressed: 'StdGen' is no longer an instance of 'Read' Regarding floating-point numbers: with this patch, the relevant instances for 'Float' and 'Double' sample more bits than before but do not sample every possible representable value. The documentation now clearly spells out what this means for users. Quality (issue 25) ================== The algorithm [1] in version 1.1 of this library fails empirical PRNG tests when used to generate "split sequences" as proposed in [3]. SplitMix [2] passes the same tests. This patch changes 'StdGen' to use the SplitMix implementation provided by the splitmix package. Test batteries used: dieharder, TestU1, PractRand. [1]: P. L'Ecuyer, "Efficient and portable combined random number generators". https://doi.org/10.1145/62959.62969 [2]: G. L. Steele, D. Lea, C. H. Flood, "Fast splittable pseudorandom number generators". https://doi.org/10.1145/2714064.2660195 [3]: H. G. Schaathun, "Evaluation of splittable pseudo-random generators". https://doi.org/10.1017/S095679681500012X Performance (issue 51) ====================== The "improvement" column in the following table is a multiplier: the improvement for 'random' for type 'Float' is 1038, so this operation is 1038 times faster with this patch. | Name | Mean (1.1) | Mean (patch) | Improvement| | ----------------------- | ---------- | ------------ | ---------- | | pure/random/Float | 30 | 0.03 | 1038| | pure/random/Double | 52 | 0.03 | 1672| | pure/random/Integer | 43 | 0.33 | 131| | pure/uniform/Word | 44 | 0.03 | 1491| | pure/uniform/Int | 43 | 0.03 | 1512| | pure/uniform/Char | 17 | 0.49 | 35| | pure/uniform/Bool | 18 | 0.03 | 618| API changes =========== StatefulGen ----------- This patch adds a class 'StatefulGen': -- | 'StatefulGen' is an interface to monadic pseudo-random number generators. class Monad m => StatefulGen g m where uniformWord32 :: g -> m Word32 -- default implementation in terms of uniformWord64 uniformWord64 :: g -> m Word64 -- default implementation in terms of uniformWord32 -- plus methods for other word sizes and for byte strings -- all have default implementations so the MINIMAL pragma holds In 'StatefulGen g m', 'g' is the type of the generator and 'm' the underlying monad. Four 'StatefulGen' instances ("monadic adapters") are provided for pure generators to enable their use in monadic code. The documentation describes them in detail. FrozenGen --------- This patch also introduces a class 'FrozenGen': -- | 'FrozenGen' is designed for stateful pseudo-random number generators -- that can be saved as and restored from an immutable data type. class StatefulGen (MutableGen f m) m => FrozenGen f m where type MutableGen f m = (g :: Type) | g -> f freezeGen :: MutableGen f m -> m f thawGen :: f -> m (MutableGen f m) 'f' is the type of the generator's state "at rest" and 'm' the underlying monad. 'MutableGen' is defined as an injective type family via 'g -> f' so for any generator 'g', the type 'f' of its at-rest state is well-defined. Both 'StatefulGen' and 'FrozenGen' are generic enough to accommodate, for example, the 'Gen' type from the 'mwc-random' package, which itself abstracts over the underlying primitive monad and state token. The documentation shows the full instances. 'Uniform' and 'UniformRange' ---------------------------- The 'Random' typeclass has conceptually been split into 'Uniform' and 'UniformRange'. The 'Random' typeclass is still included for backwards compatibility. 'Uniform' is for types where it is possible to sample from the type's entire domain; 'UniformRange' is for types where one can sample from a specified range. Breaking Changes ================ This patch introduces these breaking changes: * requires 'base >= 4.8' (GHC-7.10) * 'StdGen' is no longer an instance of 'Read' * 'randomIO' and 'randomRIO' where extracted from the 'Random' class into separate functions In addition, there may be import clashes with new functions, e.g. 'uniform' and 'uniformR'. Deprecations ============ This patch introduces 'genWord64', 'genWord32' and similar methods to the 'RandomGen' class. The significantly slower method 'next' and its companion 'genRange' are now deprecated. Co-authored-by: Alexey Kuleshevich <[email protected]> Co-authored-by: idontgetoutmuch <[email protected]> Co-authored-by: Leonhard Markert <[email protected]>
There are now up 7-tuple instances for |
|
It's impossible in our current implementation. In order to define such instance we need to be able to count number of elements in range from (a1,b1) to (a2,b2) which in turn require knowing number of values inhabiting |
@ndmitchell proposed above that "between (a,b) and (c,d) should probably be equivalent to the first member in the range a-c and the second in b-d". Under this interpretation we can define |
I think we can define such instance if we treat instance (UniformRange a, UniformRange b) => UniformRange (a, b) where
uniformRM ((al, bl), (ah, bh)) g = do
a <- uniformRM (al, ah) g
b <- uniformRM (bl, bh) g
pure (a, b) If we think of the tuples as some related value such complex numbers or something then it definitely doesn't make sense, but above instance (and similar one for |
That would be easy to implement. And in some sense it is uniform. But it's wrong is we use interpretation: "sample uniformly every value between |
In that case, I think it would be ok to add such instance for |
Defining more instances of |
I certainly disagree with Users can choose themselves which instance they want to use. One says |
The problem is that currently Lines 189 to 190 in 11464aa
Lines 197 to 199 in 11464aa
I do not particularly mind lifting this guarantee for |
FWIW, I have no particular desire for a uniform range in 99%+ of cases. I've wanted random tuples a handful of times. I'm perfectly happy with Random. |
@Bodigrim the whole point of the I am on the same page with @ndmitchell and @Shimuuar seems to support this idea as well. So, let's remove the "uniform" promise from |
If we communicate the difference between |
@lehins wrote:
I'm on board with this conclusion.
I don't understand this premise. Which |
|
There is implementation for this ticket in #72 if anyone feels like giving it a review. |
Finally this is implemented and is merged into master. These instances will be soon released with |
Looking at the interface, I see no reason tuples can't be instances of the Random class, which would make it more useful.
The text was updated successfully, but these errors were encountered: