Skip to content

Commit

Permalink
BUG: groupby with resample using on parameter errors when selecting c…
Browse files Browse the repository at this point in the history
…olumn to apply function

closes pandas-dev#17813

Author: discort <[email protected]>

Closes pandas-dev#19433 from discort/fix_17813 and squashes the following commits:

2f25d40 [discort] Fixed bug in df.resample using 'on' parameter
  • Loading branch information
discort authored and harisbal committed Feb 28, 2018
1 parent 9c25d3c commit 4ee165c
Show file tree
Hide file tree
Showing 3 changed files with 30 additions and 5 deletions.
8 changes: 6 additions & 2 deletions doc/source/whatsnew/v0.23.0.txt
Original file line number Diff line number Diff line change
Expand Up @@ -289,13 +289,17 @@ Convert to an xarray DataArray
p.to_xarray()


.. _whatsnew_0230.api_breaking.build_changes:

Build Changes
^^^^^^^^^^^^^

- Building pandas for development now requires ``cython >= 0.24`` (:issue:`18613`)
- Building from source now explicitly requires ``setuptools`` in ``setup.py`` (:issue:`18113`)
- Updated conda recipe to be in compliance with conda-build 3.0+ (:issue:`18002`)

.. _whatsnew_0230.api_breaking.extract:

Extraction of matching patterns from strings
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

Expand Down Expand Up @@ -594,8 +598,8 @@ Groupby/Resample/Rolling
- Fixed regression in :func:`DataFrame.groupby` which would not emit an error when called with a tuple key not in the index (:issue:`18798`)
- Bug in :func:`DataFrame.resample` which silently ignored unsupported (or mistyped) options for ``label``, ``closed`` and ``convention`` (:issue:`19303`)
- Bug in :func:`DataFrame.groupby` where tuples were interpreted as lists of keys rather than as keys (:issue:`17979`, :issue:`18249`)
- Bug in ``transform`` where particular aggregation functions were being incorrectly cast to match the dtype(s) of the grouped data (:issue:`19200`)
-
- Bug in :func:`DataFrame.transform` where particular aggregation functions were being incorrectly cast to match the dtype(s) of the grouped data (:issue:`19200`)
- Bug in :func:`DataFrame.groupby` passing the `on=` kwarg, and subsequently using ``.apply()`` (:issue:`17813`)

Sparse
^^^^^^
Expand Down
18 changes: 15 additions & 3 deletions pandas/core/groupby.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,6 +37,7 @@
_ensure_categorical,
_ensure_float)
from pandas.core.dtypes.cast import maybe_downcast_to_dtype
from pandas.core.dtypes.generic import ABCSeries
from pandas.core.dtypes.missing import isna, notna, _maybe_fill

from pandas.core.base import (PandasObject, SelectionMixin, GroupByError,
Expand Down Expand Up @@ -423,6 +424,7 @@ def __init__(self, key=None, level=None, freq=None, axis=0, sort=False):
self.obj = None
self.indexer = None
self.binner = None
self._grouper = None

@property
def ax(self):
Expand Down Expand Up @@ -465,12 +467,22 @@ def _set_grouper(self, obj, sort=False):
raise ValueError(
"The Grouper cannot specify both a key and a level!")

# Keep self.grouper value before overriding
if self._grouper is None:
self._grouper = self.grouper

# the key must be a valid info item
if self.key is not None:
key = self.key
if key not in obj._info_axis:
raise KeyError("The grouper name {0} is not found".format(key))
ax = Index(obj[key], name=key)
# The 'on' is already defined
if getattr(self.grouper, 'name', None) == key and \
isinstance(obj, ABCSeries):
ax = self._grouper.take(obj.index)
else:
if key not in obj._info_axis:
raise KeyError(
"The grouper name {0} is not found".format(key))
ax = Index(obj[key], name=key)

else:
ax = obj._get_axis(self.axis)
Expand Down
9 changes: 9 additions & 0 deletions pandas/tests/test_resample.py
Original file line number Diff line number Diff line change
Expand Up @@ -3077,6 +3077,15 @@ def test_getitem_multiple(self):
result = r['buyer'].count()
assert_series_equal(result, expected)

def test_groupby_resample_on_api_with_getitem(self):
# GH 17813
df = pd.DataFrame({'id': list('aabbb'),
'date': pd.date_range('1-1-2016', periods=5),
'data': 1})
exp = df.set_index('date').groupby('id').resample('2D')['data'].sum()
result = df.groupby('id').resample('2D', on='date')['data'].sum()
assert_series_equal(result, exp)

def test_nearest(self):

# GH 17496
Expand Down

0 comments on commit 4ee165c

Please sign in to comment.