Skip to content

This is a simple implementation of the ICML2015 paper ‘Generative Moment Matching Networks’ in pytorch. See

Notifications You must be signed in to change notification settings

gxwangupc/GMMN-PyTorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Generative Moment Matching Networks(GMMN)


Introduction

Environment & Requirements

  • CentOS Linux release 7.2.1511 (Core)
  • python 3.6.5
  • pytorch 1.0.0
  • torchvision
  • argparse
  • pickle

Architecture

Usage

1. Train the networks using MNIST:

python train.py

Two folders will be created, i.e., ./data & ./models. As their names imply, they are used to store data and trained models, repectively.

2. Visualize the outputs of the gmmn:

python Visualize.py --visualize gmmn

3. Visualize the outputs of the autoencoder:

python Visualize.py --visualize autoencoder

References

https://github.com/Abhipanda4/GMMN-Pytorch
https://github.com/siddharth-agrawal/Generative-Moment-Matching-Networks

About

This is a simple implementation of the ICML2015 paper ‘Generative Moment Matching Networks’ in pytorch. See

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages