Skip to content

Commit

Permalink
docs: Add Time series Dense Encoder (TiDE) model code sample.
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 524368116
  • Loading branch information
vertex-sdk-bot authored and copybara-github committed Apr 14, 2023
1 parent 588151f commit 8e91a58
Show file tree
Hide file tree
Showing 3 changed files with 199 additions and 0 deletions.
15 changes: 15 additions & 0 deletions samples/model-builder/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -279,6 +279,21 @@ def mock_run_automl_forecasting_tft_training_job(mock_forecasting_training_job):
yield mock


@pytest.fixture
def mock_get_automl_forecasting_tide_training_job(mock_forecasting_training_job):
with patch.object(
aiplatform, "TimeSeriesDenseEncoderForecastingTrainingJob"
) as mock:
mock.return_value = mock_forecasting_training_job
yield mock


@pytest.fixture
def mock_run_automl_forecasting_tide_training_job(mock_forecasting_training_job):
with patch.object(mock_forecasting_training_job, "run") as mock:
yield mock


@pytest.fixture
def mock_get_automl_image_training_job(mock_image_training_job):
with patch.object(aiplatform, "AutoMLImageTrainingJob") as mock:
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional

from google.cloud import aiplatform


# [START aiplatform_sdk_create_training_pipeline_forecasting_tide_sample]
def create_training_pipeline_forecasting_time_series_dense_encoder_sample(
project: str,
display_name: str,
dataset_id: str,
location: str = "us-central1",
model_display_name: str = "my_model",
target_column: str = "target_column",
time_column: str = "date",
time_series_identifier_column: str = "time_series_id",
unavailable_at_forecast_columns: List[str] = [],
available_at_forecast_columns: List[str] = [],
forecast_horizon: int = 1,
data_granularity_unit: str = "week",
data_granularity_count: int = 1,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
budget_milli_node_hours: int = 8000,
timestamp_split_column_name: str = "timestamp_split",
weight_column: str = "weight",
time_series_attribute_columns: List[str] = [],
context_window: int = 0,
export_evaluated_data_items: bool = False,
export_evaluated_data_items_bigquery_destination_uri: Optional[str] = None,
export_evaluated_data_items_override_destination: bool = False,
quantiles: Optional[List[float]] = None,
validation_options: Optional[str] = None,
predefined_split_column_name: Optional[str] = None,
sync: bool = True,
):
aiplatform.init(project=project, location=location)

# Create training job
forecasting_tide_job = aiplatform.TimeSeriesDenseEncoderForecastingTrainingJob(
display_name=display_name,
optimization_objective="minimize-rmse",
)

# Retrieve existing dataset
dataset = aiplatform.TimeSeriesDataset(dataset_id)

# Run training job
model = forecasting_tide_job.run(
dataset=dataset,
target_column=target_column,
time_column=time_column,
time_series_identifier_column=time_series_identifier_column,
unavailable_at_forecast_columns=unavailable_at_forecast_columns,
available_at_forecast_columns=available_at_forecast_columns,
forecast_horizon=forecast_horizon,
data_granularity_unit=data_granularity_unit,
data_granularity_count=data_granularity_count,
training_fraction_split=training_fraction_split,
validation_fraction_split=validation_fraction_split,
test_fraction_split=test_fraction_split,
predefined_split_column_name=predefined_split_column_name,
timestamp_split_column_name=timestamp_split_column_name,
weight_column=weight_column,
time_series_attribute_columns=time_series_attribute_columns,
context_window=context_window,
export_evaluated_data_items=export_evaluated_data_items,
export_evaluated_data_items_bigquery_destination_uri=export_evaluated_data_items_bigquery_destination_uri,
export_evaluated_data_items_override_destination=export_evaluated_data_items_override_destination,
quantiles=quantiles,
validation_options=validation_options,
budget_milli_node_hours=budget_milli_node_hours,
model_display_name=model_display_name,
sync=sync,
)

model.wait()

print(model.display_name)
print(model.resource_name)
print(model.uri)
return model


# [END aiplatform_sdk_create_training_pipeline_forecasting_tide_sample]
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import create_training_pipeline_forecasting_tide_sample
import test_constants as constants


def test_create_training_pipeline_forecasting_tide_sample(
mock_sdk_init,
mock_time_series_dataset,
mock_get_automl_forecasting_tide_training_job,
mock_run_automl_forecasting_tide_training_job,
mock_get_time_series_dataset,
):

create_training_pipeline_forecasting_tide_sample.create_training_pipeline_forecasting_time_series_dense_encoder_sample(
project=constants.PROJECT,
display_name=constants.DISPLAY_NAME,
dataset_id=constants.RESOURCE_ID,
model_display_name=constants.DISPLAY_NAME_2,
target_column=constants.TABULAR_TARGET_COLUMN,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000,
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME,
weight_column=constants.WEIGHT_COLUMN,
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS,
context_window=constants.CONTEXT_WINDOW,
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS,
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI,
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION,
quantiles=constants.QUANTILES,
validation_options=constants.VALIDATION_OPTIONS,
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME,
)

mock_get_time_series_dataset.assert_called_once_with(constants.RESOURCE_ID)

mock_sdk_init.assert_called_once_with(
project=constants.PROJECT, location=constants.LOCATION
)
mock_get_automl_forecasting_tide_training_job.assert_called_once_with(
display_name=constants.DISPLAY_NAME,
optimization_objective="minimize-rmse",
)
mock_run_automl_forecasting_tide_training_job.assert_called_once_with(
dataset=mock_time_series_dataset,
target_column=constants.TABULAR_TARGET_COLUMN,
time_column=constants.FORECASTNG_TIME_COLUMN,
time_series_identifier_column=constants.FORECASTNG_TIME_SERIES_IDENTIFIER_COLUMN,
unavailable_at_forecast_columns=constants.FORECASTNG_UNAVAILABLE_AT_FORECAST_COLUMNS,
available_at_forecast_columns=constants.FORECASTNG_AVAILABLE_AT_FORECAST_COLUMNS,
forecast_horizon=constants.FORECASTNG_FORECAST_HORIZON,
data_granularity_unit=constants.DATA_GRANULARITY_UNIT,
data_granularity_count=constants.DATA_GRANULARITY_COUNT,
training_fraction_split=constants.TRAINING_FRACTION_SPLIT,
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT,
test_fraction_split=constants.TEST_FRACTION_SPLIT,
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000,
model_display_name=constants.DISPLAY_NAME_2,
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME,
weight_column=constants.WEIGHT_COLUMN,
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS,
context_window=constants.CONTEXT_WINDOW,
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS,
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI,
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION,
quantiles=constants.QUANTILES,
validation_options=constants.VALIDATION_OPTIONS,
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME,
sync=True,
)

0 comments on commit 8e91a58

Please sign in to comment.