-
Notifications
You must be signed in to change notification settings - Fork 348
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
docs: Add Time series Dense Encoder (TiDE) model code sample.
PiperOrigin-RevId: 524368116
- Loading branch information
1 parent
588151f
commit 8e91a58
Showing
3 changed files
with
199 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
99 changes: 99 additions & 0 deletions
99
samples/model-builder/create_training_pipeline_forecasting_tide_sample.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
# Copyright 2022 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from typing import List, Optional | ||
|
||
from google.cloud import aiplatform | ||
|
||
|
||
# [START aiplatform_sdk_create_training_pipeline_forecasting_tide_sample] | ||
def create_training_pipeline_forecasting_time_series_dense_encoder_sample( | ||
project: str, | ||
display_name: str, | ||
dataset_id: str, | ||
location: str = "us-central1", | ||
model_display_name: str = "my_model", | ||
target_column: str = "target_column", | ||
time_column: str = "date", | ||
time_series_identifier_column: str = "time_series_id", | ||
unavailable_at_forecast_columns: List[str] = [], | ||
available_at_forecast_columns: List[str] = [], | ||
forecast_horizon: int = 1, | ||
data_granularity_unit: str = "week", | ||
data_granularity_count: int = 1, | ||
training_fraction_split: float = 0.8, | ||
validation_fraction_split: float = 0.1, | ||
test_fraction_split: float = 0.1, | ||
budget_milli_node_hours: int = 8000, | ||
timestamp_split_column_name: str = "timestamp_split", | ||
weight_column: str = "weight", | ||
time_series_attribute_columns: List[str] = [], | ||
context_window: int = 0, | ||
export_evaluated_data_items: bool = False, | ||
export_evaluated_data_items_bigquery_destination_uri: Optional[str] = None, | ||
export_evaluated_data_items_override_destination: bool = False, | ||
quantiles: Optional[List[float]] = None, | ||
validation_options: Optional[str] = None, | ||
predefined_split_column_name: Optional[str] = None, | ||
sync: bool = True, | ||
): | ||
aiplatform.init(project=project, location=location) | ||
|
||
# Create training job | ||
forecasting_tide_job = aiplatform.TimeSeriesDenseEncoderForecastingTrainingJob( | ||
display_name=display_name, | ||
optimization_objective="minimize-rmse", | ||
) | ||
|
||
# Retrieve existing dataset | ||
dataset = aiplatform.TimeSeriesDataset(dataset_id) | ||
|
||
# Run training job | ||
model = forecasting_tide_job.run( | ||
dataset=dataset, | ||
target_column=target_column, | ||
time_column=time_column, | ||
time_series_identifier_column=time_series_identifier_column, | ||
unavailable_at_forecast_columns=unavailable_at_forecast_columns, | ||
available_at_forecast_columns=available_at_forecast_columns, | ||
forecast_horizon=forecast_horizon, | ||
data_granularity_unit=data_granularity_unit, | ||
data_granularity_count=data_granularity_count, | ||
training_fraction_split=training_fraction_split, | ||
validation_fraction_split=validation_fraction_split, | ||
test_fraction_split=test_fraction_split, | ||
predefined_split_column_name=predefined_split_column_name, | ||
timestamp_split_column_name=timestamp_split_column_name, | ||
weight_column=weight_column, | ||
time_series_attribute_columns=time_series_attribute_columns, | ||
context_window=context_window, | ||
export_evaluated_data_items=export_evaluated_data_items, | ||
export_evaluated_data_items_bigquery_destination_uri=export_evaluated_data_items_bigquery_destination_uri, | ||
export_evaluated_data_items_override_destination=export_evaluated_data_items_override_destination, | ||
quantiles=quantiles, | ||
validation_options=validation_options, | ||
budget_milli_node_hours=budget_milli_node_hours, | ||
model_display_name=model_display_name, | ||
sync=sync, | ||
) | ||
|
||
model.wait() | ||
|
||
print(model.display_name) | ||
print(model.resource_name) | ||
print(model.uri) | ||
return model | ||
|
||
|
||
# [END aiplatform_sdk_create_training_pipeline_forecasting_tide_sample] |
85 changes: 85 additions & 0 deletions
85
samples/model-builder/create_training_pipeline_forecasting_tide_sample_test.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
# Copyright 2022 Google LLC | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# https://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
|
||
import create_training_pipeline_forecasting_tide_sample | ||
import test_constants as constants | ||
|
||
|
||
def test_create_training_pipeline_forecasting_tide_sample( | ||
mock_sdk_init, | ||
mock_time_series_dataset, | ||
mock_get_automl_forecasting_tide_training_job, | ||
mock_run_automl_forecasting_tide_training_job, | ||
mock_get_time_series_dataset, | ||
): | ||
|
||
create_training_pipeline_forecasting_tide_sample.create_training_pipeline_forecasting_time_series_dense_encoder_sample( | ||
project=constants.PROJECT, | ||
display_name=constants.DISPLAY_NAME, | ||
dataset_id=constants.RESOURCE_ID, | ||
model_display_name=constants.DISPLAY_NAME_2, | ||
target_column=constants.TABULAR_TARGET_COLUMN, | ||
training_fraction_split=constants.TRAINING_FRACTION_SPLIT, | ||
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT, | ||
test_fraction_split=constants.TEST_FRACTION_SPLIT, | ||
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000, | ||
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME, | ||
weight_column=constants.WEIGHT_COLUMN, | ||
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS, | ||
context_window=constants.CONTEXT_WINDOW, | ||
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS, | ||
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI, | ||
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION, | ||
quantiles=constants.QUANTILES, | ||
validation_options=constants.VALIDATION_OPTIONS, | ||
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME, | ||
) | ||
|
||
mock_get_time_series_dataset.assert_called_once_with(constants.RESOURCE_ID) | ||
|
||
mock_sdk_init.assert_called_once_with( | ||
project=constants.PROJECT, location=constants.LOCATION | ||
) | ||
mock_get_automl_forecasting_tide_training_job.assert_called_once_with( | ||
display_name=constants.DISPLAY_NAME, | ||
optimization_objective="minimize-rmse", | ||
) | ||
mock_run_automl_forecasting_tide_training_job.assert_called_once_with( | ||
dataset=mock_time_series_dataset, | ||
target_column=constants.TABULAR_TARGET_COLUMN, | ||
time_column=constants.FORECASTNG_TIME_COLUMN, | ||
time_series_identifier_column=constants.FORECASTNG_TIME_SERIES_IDENTIFIER_COLUMN, | ||
unavailable_at_forecast_columns=constants.FORECASTNG_UNAVAILABLE_AT_FORECAST_COLUMNS, | ||
available_at_forecast_columns=constants.FORECASTNG_AVAILABLE_AT_FORECAST_COLUMNS, | ||
forecast_horizon=constants.FORECASTNG_FORECAST_HORIZON, | ||
data_granularity_unit=constants.DATA_GRANULARITY_UNIT, | ||
data_granularity_count=constants.DATA_GRANULARITY_COUNT, | ||
training_fraction_split=constants.TRAINING_FRACTION_SPLIT, | ||
validation_fraction_split=constants.VALIDATION_FRACTION_SPLIT, | ||
test_fraction_split=constants.TEST_FRACTION_SPLIT, | ||
budget_milli_node_hours=constants.BUDGET_MILLI_NODE_HOURS_8000, | ||
model_display_name=constants.DISPLAY_NAME_2, | ||
timestamp_split_column_name=constants.TIMESTAMP_SPLIT_COLUMN_NAME, | ||
weight_column=constants.WEIGHT_COLUMN, | ||
time_series_attribute_columns=constants.TIME_SERIES_ATTRIBUTE_COLUMNS, | ||
context_window=constants.CONTEXT_WINDOW, | ||
export_evaluated_data_items=constants.EXPORT_EVALUATED_DATA_ITEMS, | ||
export_evaluated_data_items_bigquery_destination_uri=constants.EXPORT_EVALUATED_DATA_ITEMS_BIGQUERY_DESTINATION_URI, | ||
export_evaluated_data_items_override_destination=constants.EXPORT_EVALUATED_DATA_ITEMS_OVERRIDE_DESTINATION, | ||
quantiles=constants.QUANTILES, | ||
validation_options=constants.VALIDATION_OPTIONS, | ||
predefined_split_column_name=constants.PREDEFINED_SPLIT_COLUMN_NAME, | ||
sync=True, | ||
) |