Skip to content

Commit

Permalink
feat: adds GetAnnotationSpec, DeployModel, UndeployModel, ExportModel (
Browse files Browse the repository at this point in the history
  • Loading branch information
yoshi-automation authored and bcoe committed Nov 12, 2019
1 parent 883ce5a commit 2a1fe06
Show file tree
Hide file tree
Showing 60 changed files with 35,089 additions and 7,782 deletions.
1 change: 0 additions & 1 deletion packages/google-cloud-automl/.nycrc
Original file line number Diff line number Diff line change
Expand Up @@ -10,7 +10,6 @@
"**/docs",
"**/samples",
"**/scripts",
"**/src/**/v*/**/*.js",
"**/protos",
"**/test",
".jsdoc.js",
Expand Down
1 change: 0 additions & 1 deletion packages/google-cloud-automl/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,7 +111,6 @@ has instructions for running the samples.
| Sample | Source Code | Try it |
| --------------------------- | --------------------------------- | ------ |
| Quickstart | [source code](https://github.com/googleapis/nodejs-automl/blob/master/samples/quickstart.js) | [![Open in Cloud Shell][shell_img]](https://console.cloud.google.com/cloudshell/open?git_repo=https://github.com/googleapis/nodejs-automl&page=editor&open_in_editor=samples/quickstart.js,samples/README.md) |
| Set Endpoint | [source code](https://github.com/googleapis/nodejs-automl/blob/master/samples/beta/setEndpoint.js) | [![Open in Cloud Shell][shell_img]](https://console.cloud.google.com/cloudshell/open?git_repo=https://github.com/googleapis/nodejs-automl&page=editor&open_in_editor=samples/beta/setEndpoint.js,samples/README.md) |



Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -17,12 +17,16 @@ syntax = "proto3";

package google.cloud.automl.v1;

import "google/cloud/automl/v1/classification.proto";
import "google/cloud/automl/v1/detection.proto";
import "google/cloud/automl/v1/text_extraction.proto";
import "google/cloud/automl/v1/text_sentiment.proto";
import "google/cloud/automl/v1/translation.proto";
import "google/protobuf/any.proto";
import "google/api/annotations.proto";

option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1;automl";
option csharp_namespace = "Google.Cloud.AutoML.V1";
option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1;automl";
option java_multiple_files = true;
option java_package = "com.google.cloud.automl.v1";
option php_namespace = "Google\\Cloud\\AutoML\\V1";
Expand All @@ -35,5 +39,30 @@ message AnnotationPayload {
oneof detail {
// Annotation details for translation.
TranslationAnnotation translation = 2;

// Annotation details for content or image classification.
ClassificationAnnotation classification = 3;

// Annotation details for image object detection.
ImageObjectDetectionAnnotation image_object_detection = 4;

// Annotation details for text extraction.
TextExtractionAnnotation text_extraction = 6;

// Annotation details for text sentiment.
TextSentimentAnnotation text_sentiment = 7;
}

// Output only . The resource ID of the annotation spec that
// this annotation pertains to. The annotation spec comes from either an
// ancestor dataset, or the dataset that was used to train the model in use.
string annotation_spec_id = 1;

// Output only. The value of
// [display_name][google.cloud.automl.v1.AnnotationSpec.display_name]
// when the model was trained. Because this field returns a value at model
// training time, for different models trained using the same dataset, the
// returned value could be different as model owner could update the
// `display_name` between any two model training.
string display_name = 5;
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
// Copyright 2019 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

syntax = "proto3";

package google.cloud.automl.v1;

import "google/api/annotations.proto";

option csharp_namespace = "Google.Cloud.AutoML.V1";
option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1;automl";
option java_multiple_files = true;
option java_package = "com.google.cloud.automl.v1";
option php_namespace = "Google\\Cloud\\AutoML\\V1";
option ruby_package = "Google::Cloud::AutoML::V1";

// A definition of an annotation spec.
message AnnotationSpec {
// Output only. Resource name of the annotation spec.
// Form:
//
// 'projects/{project_id}/locations/{location_id}/datasets/{dataset_id}/annotationSpecs/{annotation_spec_id}'
string name = 1;

// Required.
// The name of the annotation spec to show in the interface. The name can be
// up to 32 characters long and must match the regexp `[a-zA-Z0-9_]+`.
// (_), and ASCII digits 0-9.
string display_name = 2;

// Output only. The number of examples in the parent dataset
// labeled by the annotation spec.
int32 example_count = 9;
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,172 @@
// Copyright 2019 Google LLC.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//

syntax = "proto3";

package google.cloud.automl.v1;

import "google/api/annotations.proto";

option csharp_namespace = "Google.Cloud.AutoML.V1";
option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1;automl";
option java_multiple_files = true;
option java_outer_classname = "ClassificationProto";
option java_package = "com.google.cloud.automl.v1";
option php_namespace = "Google\\Cloud\\AutoML\\V1";
option ruby_package = "Google::Cloud::AutoML::V1";

// Type of the classification problem.
enum ClassificationType {
// An un-set value of this enum.
CLASSIFICATION_TYPE_UNSPECIFIED = 0;

// At most one label is allowed per example.
MULTICLASS = 1;

// Multiple labels are allowed for one example.
MULTILABEL = 2;
}

// Contains annotation details specific to classification.
message ClassificationAnnotation {
// Output only. A confidence estimate between 0.0 and 1.0. A higher value
// means greater confidence that the annotation is positive. If a user
// approves an annotation as negative or positive, the score value remains
// unchanged. If a user creates an annotation, the score is 0 for negative or
// 1 for positive.
float score = 1;
}

// Model evaluation metrics for classification problems.
message ClassificationEvaluationMetrics {
// Metrics for a single confidence threshold.
message ConfidenceMetricsEntry {
// Output only. Metrics are computed with an assumption that the model
// never returns predictions with score lower than this value.
float confidence_threshold = 1;

// Output only. Metrics are computed with an assumption that the model
// always returns at most this many predictions (ordered by their score,
// descendingly), but they all still need to meet the confidence_threshold.
int32 position_threshold = 14;

// Output only. Recall (True Positive Rate) for the given confidence
// threshold.
float recall = 2;

// Output only. Precision for the given confidence threshold.
float precision = 3;

// Output only. False Positive Rate for the given confidence threshold.
float false_positive_rate = 8;

// Output only. The harmonic mean of recall and precision.
float f1_score = 4;

// Output only. The Recall (True Positive Rate) when only considering the
// label that has the highest prediction score and not below the confidence
// threshold for each example.
float recall_at1 = 5;

// Output only. The precision when only considering the label that has the
// highest prediction score and not below the confidence threshold for each
// example.
float precision_at1 = 6;

// Output only. The False Positive Rate when only considering the label that
// has the highest prediction score and not below the confidence threshold
// for each example.
float false_positive_rate_at1 = 9;

// Output only. The harmonic mean of
// [recall_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.recall_at1]
// and
// [precision_at1][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfidenceMetricsEntry.precision_at1].
float f1_score_at1 = 7;

// Output only. The number of model created labels that match a ground truth
// label.
int64 true_positive_count = 10;

// Output only. The number of model created labels that do not match a
// ground truth label.
int64 false_positive_count = 11;

// Output only. The number of ground truth labels that are not matched
// by a model created label.
int64 false_negative_count = 12;

// Output only. The number of labels that were not created by the model,
// but if they would, they would not match a ground truth label.
int64 true_negative_count = 13;
}

// Confusion matrix of the model running the classification.
message ConfusionMatrix {
// Output only. A row in the confusion matrix.
message Row {
// Output only. Value of the specific cell in the confusion matrix.
// The number of values each row has (i.e. the length of the row) is equal
// to the length of the `annotation_spec_id` field or, if that one is not
// populated, length of the
// [display_name][google.cloud.automl.v1.ClassificationEvaluationMetrics.ConfusionMatrix.display_name]
// field.
repeated int32 example_count = 1;
}

// Output only. IDs of the annotation specs used in the confusion matrix.
repeated string annotation_spec_id = 1;

// Output only. Display name of the annotation specs used in the confusion
// matrix, as they were at the moment of the evaluation.
repeated string display_name = 3;

// Output only. Rows in the confusion matrix. The number of rows is equal to
// the size of `annotation_spec_id`.
// `row[i].example_count[j]` is the number of examples that have ground
// truth of the `annotation_spec_id[i]` and are predicted as
// `annotation_spec_id[j]` by the model being evaluated.
repeated Row row = 2;
}

// Output only. The Area Under Precision-Recall Curve metric. Micro-averaged
// for the overall evaluation.
float au_prc = 1;

// Output only. The Area Under Receiver Operating Characteristic curve metric.
// Micro-averaged for the overall evaluation.
float au_roc = 6;

// Output only. The Log Loss metric.
float log_loss = 7;

// Output only. Metrics for each confidence_threshold in
// 0.00,0.05,0.10,...,0.95,0.96,0.97,0.98,0.99 and
// position_threshold = INT32_MAX_VALUE.
// ROC and precision-recall curves, and other aggregated metrics are derived
// from them. The confidence metrics entries may also be supplied for
// additional values of position_threshold, but from these no aggregated
// metrics are computed.
repeated ConfidenceMetricsEntry confidence_metrics_entry = 3;

// Output only. Confusion matrix of the evaluation.
// Only set for MULTICLASS classification problems where number
// of labels is no more than 10.
// Only set for model level evaluation, not for evaluation per label.
ConfusionMatrix confusion_matrix = 4;

// Output only. The annotation spec ids used for this evaluation.
repeated string annotation_spec_id = 5;
}
Loading

0 comments on commit 2a1fe06

Please sign in to comment.