-
Notifications
You must be signed in to change notification settings - Fork 27
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add
examples/automl/mnist/pytorch/mnist_train
.
PiperOrigin-RevId: 517526613
- Loading branch information
Showing
1 changed file
with
132 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
# Copyright 2023 The PyGlove Authors | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""Train MNIST. | ||
This is a basic working ML program which trains MNIST. | ||
The code is modified from the pytorch mnist example: | ||
https://github.com/pytorch/examples/blob/main/mnist/main.py | ||
""" | ||
from absl import app | ||
import torch | ||
from torch import nn | ||
from torch import optim | ||
from torch.nn import functional as F | ||
from torch.optim.lr_scheduler import StepLR | ||
from torchvision import datasets | ||
from torchvision import transforms | ||
|
||
|
||
class Net(nn.Module): | ||
"""Nerual architecture for MNIST.""" | ||
|
||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 32, 3, 1) | ||
self.conv2 = nn.Conv2d(32, 64, 3, 1) | ||
self.dropout1 = nn.Dropout(0.25) | ||
self.dropout2 = nn.Dropout(0.5) | ||
self.fc1 = nn.Linear(9216, 128) | ||
self.fc2 = nn.Linear(128, 10) | ||
|
||
def forward(self, x): | ||
x = self.conv1(x) | ||
x = F.relu(x) | ||
x = self.conv2(x) | ||
x = F.relu(x) | ||
x = F.max_pool2d(x, 2) | ||
x = self.dropout1(x) | ||
x = torch.flatten(x, 1) | ||
x = self.fc1(x) | ||
x = F.relu(x) | ||
x = self.dropout2(x) | ||
x = self.fc2(x) | ||
output = F.log_softmax(x, dim=1) | ||
return output | ||
|
||
|
||
def train(model, device, train_loader, optimizer, epoch, | ||
dry_run=False, log_interval=100): | ||
"""Train model.""" | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
data, target = data.to(device), target.to(device) | ||
optimizer.zero_grad() | ||
output = model(data) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % log_interval == 0: | ||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.item())) | ||
if dry_run: | ||
break | ||
|
||
|
||
def test(model, device, test_loader): | ||
"""Test model.""" | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
with torch.no_grad(): | ||
for data, target in test_loader: | ||
data, target = data.to(device), target.to(device) | ||
output = model(data) | ||
test_loss += F.nll_loss(output, target, reduction='sum').item() | ||
pred = output.argmax(dim=1, keepdim=True) | ||
correct += pred.eq(target.view_as(pred)).sum().item() | ||
|
||
test_loss /= len(test_loader.dataset) | ||
accuracy = correct / len(test_loader.dataset) | ||
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | ||
test_loss, correct, len(test_loader.dataset), | ||
100. * accuracy)) | ||
return accuracy | ||
|
||
|
||
def train_and_eval(lr=1.0, batch_size=64, epochs=1, dry_run=False) -> float: | ||
"""Train model and test model.""" | ||
transform = transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
]) | ||
dataset1 = datasets.MNIST( | ||
'../data', train=True, download=True, transform=transform) | ||
dataset2 = datasets.MNIST('../data', train=False, transform=transform) | ||
train_loader = torch.utils.data.DataLoader(dataset1, batch_size=batch_size) | ||
test_loader = torch.utils.data.DataLoader(dataset2, batch_size=128) | ||
|
||
device = torch.device('cpu') | ||
model = Net().to(device) | ||
optimizer = optim.Adadelta(model.parameters(), lr=lr) | ||
|
||
scheduler = StepLR(optimizer, step_size=1, gamma=0.7) | ||
accuracy = 0.0 | ||
for epoch in range(1, epochs + 1): | ||
train(model, device, train_loader, optimizer, epoch, dry_run=dry_run) | ||
if dry_run: | ||
break | ||
accuracy = test(model, device, test_loader) | ||
scheduler.step() | ||
return accuracy | ||
|
||
|
||
def main(argv): | ||
if len(argv) > 1: | ||
raise app.UsageError('Too many command-line arguments.') | ||
train_and_eval() | ||
|
||
|
||
if __name__ == '__main__': | ||
app.run(main) |