Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add benchmark on state traversal, and a readme #4428

Merged
merged 1 commit into from
Dec 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 15 additions & 0 deletions benchmarks/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
# Benchmarks

These are mini benchmarks to measure the performance of NNX operations.

Sample profile command:

```shell
python -m cProfile -o ~/tmp/overhead.prof benchmarks/nnx_graph_overhead.py --mode=nnx --depth=100 --total_steps=1000
```

Sample profile inspection:

```shell
snakeviz ~/tmp/overhead.prof
```
1 change: 0 additions & 1 deletion benchmarks/nnx_graph_overhead.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.

# %%
import jax
import jax.numpy as jnp
import numpy as np
Expand Down
106 changes: 106 additions & 0 deletions benchmarks/nnx_state_traversal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Copyright 2024 The Flax Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Example profile command:
# python -m cProfile -o ~/tmp/overhead.prof benchmarks/nnx_graph_overhead.py --mode=nnx --depth=100 --total_steps=1000
# View profile (need to install snakeviz):
# snakeviz ~/tmp/overhead.prof

import jax
from time import time

from flax import nnx

from absl import flags
from absl import app

FLAGS = flags.FLAGS
flags.DEFINE_integer('total_steps', 1000, 'Total number of training steps')
flags.DEFINE_integer('width', 4, 'Width of each level')
flags.DEFINE_integer('depth', 4, 'Depth of the model')


class NestedClass(nnx.Module):
def __init__(self, width, depth):
self.x = nnx.Variable(jax.numpy.ones((depth+1, )))
if depth > 0:
for i in range(width):
setattr(self, f'child{i}', NestedClass(width, depth-1))


def main(argv):
print(argv)
total_steps: int = FLAGS.total_steps
width: int = FLAGS.width
depth: int = FLAGS.depth


model = NestedClass(width, depth)
to_test = nnx.state(model)

print(f'{total_steps=}, {width=}')

#------------------------------------------------------------
# tree_flatten_with_path
#------------------------------------------------------------
t0 = time()
for _ in range(total_steps):
jax.tree_util.tree_flatten_with_path(to_test)

total_time = time() - t0
time_per_step = total_time / total_steps
time_per_layer = time_per_step / depth
print("### tree_flatten_with_path ###")
print('total time:', total_time)
print(f'time per step: {time_per_step * 1e6:.2f} µs')
print(f'time per layer: {time_per_layer * 1e6:.2f} µs')


#------------------------------------------------------------
# tree_map_with_path
#------------------------------------------------------------

t0 = time()
for _ in range(total_steps):
jax.tree_util.tree_map_with_path(lambda _, x: x, to_test)

total_time = time() - t0
time_per_step = total_time / total_steps
time_per_layer = time_per_step / depth
print("### tree_map_with_path ###")
print('total time:', total_time)
print(f'time per step: {time_per_step * 1e6:.2f} µs')
print(f'time per layer: {time_per_layer * 1e6:.2f} µs')


#------------------------------------------------------------
# tree_flatten
#------------------------------------------------------------

t0 = time()
for _ in range(total_steps):
jax.tree_util.tree_flatten(to_test)

total_time = time() - t0
time_per_step = total_time / total_steps
time_per_layer = time_per_step / depth
print("### tree_flatten ###")
print('total time:', total_time)
print(f'time per step: {time_per_step * 1e6:.2f} µs')
print(f'time per layer: {time_per_layer * 1e6:.2f} µs')



if __name__ == '__main__':
app.run(main)
Loading
Loading