Skip to content

Commit

Permalink
Fixed Timestep Interpolation (3D)
Browse files Browse the repository at this point in the history
Adds 3D fixed timestep interpolation to the rendering server.
This does not yet include support for multimeshes or particles.

Co-authored-by: lawnjelly <[email protected]>
  • Loading branch information
rburing and lawnjelly committed May 27, 2024
1 parent be56cab commit 36dcc83
Show file tree
Hide file tree
Showing 28 changed files with 1,369 additions and 65 deletions.
338 changes: 338 additions & 0 deletions core/math/transform_interpolator.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
#include "transform_interpolator.h"

#include "core/math/transform_2d.h"
#include "core/math/transform_3d.h"

void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev, const Transform2D &p_curr, Transform2D &r_result, real_t p_fraction) {
// Extract parameters.
Expand Down Expand Up @@ -74,3 +75,340 @@ void TransformInterpolator::interpolate_transform_2d(const Transform2D &p_prev,
r_result = Transform2D(Math::atan2(v.y, v.x), p1.lerp(p2, p_fraction));
r_result.scale_basis(s1.lerp(s2, p_fraction));
}

void TransformInterpolator::interpolate_transform_3d(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction) {
r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
interpolate_basis(p_prev.basis, p_curr.basis, r_result.basis, p_fraction);
}

void TransformInterpolator::interpolate_basis(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
Method method = find_method(p_prev, p_curr);
interpolate_basis_via_method(p_prev, p_curr, r_result, p_fraction, method);
}

void TransformInterpolator::interpolate_transform_3d_via_method(const Transform3D &p_prev, const Transform3D &p_curr, Transform3D &r_result, real_t p_fraction, TransformInterpolator::Method p_method) {
r_result.origin = p_prev.origin + ((p_curr.origin - p_prev.origin) * p_fraction);
interpolate_basis_via_method(p_prev.basis, p_curr.basis, r_result.basis, p_fraction, p_method);
}

void TransformInterpolator::interpolate_basis_via_method(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction, TransformInterpolator::Method p_method) {
switch (p_method) {
default: {
interpolate_basis_linear(p_prev, p_curr, r_result, p_fraction);
} break;
case INTERP_SLERP: {
r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);
} break;
case INTERP_SCALED_SLERP: {
interpolate_basis_scaled_slerp(p_prev, p_curr, r_result, p_fraction);
} break;
}
}

Quaternion TransformInterpolator::_basis_to_quat_unchecked(const Basis &p_basis) {
Basis m = p_basis;
real_t trace = m.rows[0][0] + m.rows[1][1] + m.rows[2][2];
real_t temp[4];

if (trace > 0.0) {
real_t s = Math::sqrt(trace + 1.0f);
temp[3] = (s * 0.5f);
s = 0.5f / s;

temp[0] = ((m.rows[2][1] - m.rows[1][2]) * s);
temp[1] = ((m.rows[0][2] - m.rows[2][0]) * s);
temp[2] = ((m.rows[1][0] - m.rows[0][1]) * s);
} else {
int i = m.rows[0][0] < m.rows[1][1]
? (m.rows[1][1] < m.rows[2][2] ? 2 : 1)
: (m.rows[0][0] < m.rows[2][2] ? 2 : 0);
int j = (i + 1) % 3;
int k = (i + 2) % 3;

real_t s = Math::sqrt(m.rows[i][i] - m.rows[j][j] - m.rows[k][k] + 1.0f);
temp[i] = s * 0.5f;
s = 0.5f / s;

temp[3] = (m.rows[k][j] - m.rows[j][k]) * s;
temp[j] = (m.rows[j][i] + m.rows[i][j]) * s;
temp[k] = (m.rows[k][i] + m.rows[i][k]) * s;
}

return Quaternion(temp[0], temp[1], temp[2], temp[3]);
}

Quaternion TransformInterpolator::_quat_slerp_unchecked(const Quaternion &p_from, const Quaternion &p_to, real_t p_fraction) {
Quaternion to1;
real_t omega, cosom, sinom, scale0, scale1;

// Calculate cosine.
cosom = p_from.dot(p_to);

// Adjust signs (if necessary)
if (cosom < 0.0f) {
cosom = -cosom;
to1.x = -p_to.x;
to1.y = -p_to.y;
to1.z = -p_to.z;
to1.w = -p_to.w;
} else {
to1.x = p_to.x;
to1.y = p_to.y;
to1.z = p_to.z;
to1.w = p_to.w;
}

// Calculate coefficients.

// This check could possibly be removed as we dealt with this
// case in the find_method() function, but is left for safety, it probably
// isn't a bottleneck.
if ((1.0f - cosom) > (real_t)CMP_EPSILON) {
// standard case (slerp)
omega = Math::acos(cosom);
sinom = Math::sin(omega);
scale0 = Math::sin((1.0f - p_fraction) * omega) / sinom;
scale1 = Math::sin(p_fraction * omega) / sinom;
} else {
// "from" and "to" quaternions are very close
// ... so we can do a linear interpolation
scale0 = 1.0f - p_fraction;
scale1 = p_fraction;
}
// Calculate final values.
return Quaternion(
scale0 * p_from.x + scale1 * to1.x,
scale0 * p_from.y + scale1 * to1.y,
scale0 * p_from.z + scale1 * to1.z,
scale0 * p_from.w + scale1 * to1.w);
}

Basis TransformInterpolator::_basis_slerp_unchecked(Basis p_from, Basis p_to, real_t p_fraction) {
Quaternion from = _basis_to_quat_unchecked(p_from);
Quaternion to = _basis_to_quat_unchecked(p_to);

Basis b(_quat_slerp_unchecked(from, to, p_fraction));
return b;
}

void TransformInterpolator::interpolate_basis_scaled_slerp(Basis p_prev, Basis p_curr, Basis &r_result, real_t p_fraction) {
// Normalize both and find lengths.
Vector3 lengths_prev = _basis_orthonormalize(p_prev);
Vector3 lengths_curr = _basis_orthonormalize(p_curr);

r_result = _basis_slerp_unchecked(p_prev, p_curr, p_fraction);

// Now the result is unit length basis, we need to scale.
Vector3 lengths_lerped = lengths_prev + ((lengths_curr - lengths_prev) * p_fraction);

// Keep a note that the column / row order of the basis is weird,
// so keep an eye for bugs with this.
r_result[0] *= lengths_lerped;
r_result[1] *= lengths_lerped;
r_result[2] *= lengths_lerped;
}

void TransformInterpolator::interpolate_basis_linear(const Basis &p_prev, const Basis &p_curr, Basis &r_result, real_t p_fraction) {
// Interpolate basis.
r_result = p_prev.lerp(p_curr, p_fraction);

// It turns out we need to guard against zero scale basis.
// This is kind of silly, as we should probably fix the bugs elsewhere in Godot that can't deal with
// zero scale, but until that time...
for (int n = 0; n < 3; n++) {
Vector3 &axis = r_result[n];

// Not ok, this could cause errors due to bugs elsewhere,
// so we will bodge set this to a small value.
const real_t smallest = 0.0001f;
const real_t smallest_squared = smallest * smallest;
if (axis.length_squared() < smallest_squared) {
// Setting a different component to the smallest
// helps prevent the situation where all the axes are pointing in the same direction,
// which could be a problem for e.g. cross products...
axis[n] = smallest;
}
}
}

// Returns length.
real_t TransformInterpolator::_vec3_normalize(Vector3 &p_vec) {
real_t lengthsq = p_vec.length_squared();
if (lengthsq == 0.0f) {
p_vec.x = p_vec.y = p_vec.z = 0.0f;
return 0.0f;
}
real_t length = Math::sqrt(lengthsq);
p_vec.x /= length;
p_vec.y /= length;
p_vec.z /= length;
return length;
}

// Returns lengths.
Vector3 TransformInterpolator::_basis_orthonormalize(Basis &r_basis) {
// Gram-Schmidt Process.

Vector3 x = r_basis.get_column(0);
Vector3 y = r_basis.get_column(1);
Vector3 z = r_basis.get_column(2);

Vector3 lengths;

lengths.x = _vec3_normalize(x);
y = (y - x * (x.dot(y)));
lengths.y = _vec3_normalize(y);
z = (z - x * (x.dot(z)) - y * (y.dot(z)));
lengths.z = _vec3_normalize(z);

r_basis.set_column(0, x);
r_basis.set_column(1, y);
r_basis.set_column(2, z);

return lengths;
}

TransformInterpolator::Method TransformInterpolator::_test_basis(Basis p_basis, bool r_needed_normalize, Quaternion &r_quat) {
// Axis lengths.
Vector3 al = Vector3(p_basis.get_column(0).length_squared(),
p_basis.get_column(1).length_squared(),
p_basis.get_column(2).length_squared());

// Non unit scale?
if (r_needed_normalize || !_vec3_is_equal_approx(al, Vector3(1.0, 1.0, 1.0), (real_t)0.001f)) {
// If the basis is not normalized (at least approximately), it will fail the checks needed for slerp.
// So we try to detect a scaled (but not sheared) basis, which we *can* slerp by normalizing first,
// and lerping the scales separately.

// If any of the axes are really small, it is unlikely to be a valid rotation, or is scaled too small to deal with float error.
const real_t sl_epsilon = 0.00001f;
if ((al.x < sl_epsilon) ||
(al.y < sl_epsilon) ||
(al.z < sl_epsilon)) {
return INTERP_LERP;
}

// Normalize the basis.
Basis norm_basis = p_basis;

al.x = Math::sqrt(al.x);
al.y = Math::sqrt(al.y);
al.z = Math::sqrt(al.z);

norm_basis.set_column(0, norm_basis.get_column(0) / al.x);
norm_basis.set_column(1, norm_basis.get_column(1) / al.y);
norm_basis.set_column(2, norm_basis.get_column(2) / al.z);

// This doesn't appear necessary, as the later checks will catch it.
// if (!_basis_is_orthogonal_any_scale(norm_basis)) {
// return INTERP_LERP;
// }

p_basis = norm_basis;

// Orthonormalize not necessary as normal normalization(!) works if the
// axes are orthonormal.
// p_basis.orthonormalize();

// If we needed to normalize one of the two bases, we will need to normalize both,
// regardless of whether the 2nd needs it, just to make sure it takes the path to return
// INTERP_SCALED_LERP on the 2nd call of _test_basis.
r_needed_normalize = true;
}

// Apply less stringent tests than the built in slerp, the standard Godot slerp
// is too susceptible to float error to be useful.
real_t det = p_basis.determinant();
if (!Math::is_equal_approx(det, 1, (real_t)0.01f)) {
return INTERP_LERP;
}

if (!_basis_is_orthogonal(p_basis)) {
return INTERP_LERP;
}

// TODO: This could possibly be less stringent too, check this.
r_quat = _basis_to_quat_unchecked(p_basis);
if (!r_quat.is_normalized()) {
return INTERP_LERP;
}

return r_needed_normalize ? INTERP_SCALED_SLERP : INTERP_SLERP;
}

// This check doesn't seem to be needed but is preserved in case of bugs.
bool TransformInterpolator::_basis_is_orthogonal_any_scale(const Basis &p_basis) {
Vector3 cross = p_basis.get_column(0).cross(p_basis.get_column(1));
real_t l = _vec3_normalize(cross);
// Too small numbers, revert to lerp.
if (l < 0.001f) {
return false;
}

const real_t epsilon = 0.9995f;

real_t dot = cross.dot(p_basis.get_column(2));
if (dot < epsilon) {
return false;
}

cross = p_basis.get_column(1).cross(p_basis.get_column(2));
l = _vec3_normalize(cross);
// Too small numbers, revert to lerp.
if (l < 0.001f) {
return false;
}

dot = cross.dot(p_basis.get_column(0));
if (dot < epsilon) {
return false;
}

return true;
}

bool TransformInterpolator::_basis_is_orthogonal(const Basis &p_basis, real_t p_epsilon) {
Basis identity;
Basis m = p_basis * p_basis.transposed();

// Less stringent tests than the standard Godot slerp.
if (!_vec3_is_equal_approx(m[0], identity[0], p_epsilon) || !_vec3_is_equal_approx(m[1], identity[1], p_epsilon) || !_vec3_is_equal_approx(m[2], identity[2], p_epsilon)) {
return false;
}
return true;
}

real_t TransformInterpolator::checksum_transform_3d(const Transform3D &p_transform) {
// just a really basic checksum, this can probably be improved
real_t sum = _vec3_sum(p_transform.origin);
sum -= _vec3_sum(p_transform.basis.rows[0]);
sum += _vec3_sum(p_transform.basis.rows[1]);
sum -= _vec3_sum(p_transform.basis.rows[2]);
return sum;
}

TransformInterpolator::Method TransformInterpolator::find_method(const Basis &p_a, const Basis &p_b) {
bool needed_normalize = false;

Quaternion q0;
Method method = _test_basis(p_a, needed_normalize, q0);
if (method == INTERP_LERP) {
return method;
}

Quaternion q1;
method = _test_basis(p_b, needed_normalize, q1);
if (method == INTERP_LERP) {
return method;
}

// Are they close together?
// Apply the same test that will revert to lerp as is present in the slerp routine.
// Calculate cosine.
real_t cosom = Math::abs(q0.dot(q1));
if ((1.0f - cosom) <= (real_t)CMP_EPSILON) {
return INTERP_LERP;
}

return method;
}
Loading

0 comments on commit 36dcc83

Please sign in to comment.