Skip to content

Commit

Permalink
Use a heap to store traversable polygons for pathfinding
Browse files Browse the repository at this point in the history
  • Loading branch information
ershn committed Aug 31, 2024
1 parent fd7239c commit 06e054a
Show file tree
Hide file tree
Showing 4 changed files with 433 additions and 85 deletions.
145 changes: 70 additions & 75 deletions modules/navigation/nav_map.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -221,27 +221,27 @@ Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p

// List of all reachable navigation polys.
LocalVector<gd::NavigationPoly> navigation_polys;
navigation_polys.reserve(polygons.size() * 0.75);
navigation_polys.resize(polygons.size() + link_polygons.size());

// Add the start polygon to the reachable navigation polygons.
gd::NavigationPoly begin_navigation_poly = gd::NavigationPoly(begin_poly);
begin_navigation_poly.self_id = 0;
// Initialize the matching navigation polygon.
gd::NavigationPoly &begin_navigation_poly = navigation_polys[begin_poly->id];
begin_navigation_poly.poly = begin_poly;
begin_navigation_poly.entry = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_start = begin_point;
begin_navigation_poly.back_navigation_edge_pathway_end = begin_point;
navigation_polys.push_back(begin_navigation_poly);

// List of polygon IDs to visit.
List<uint32_t> to_visit;
to_visit.push_back(0);
// Heap of polygons to travel next.
gd::Heap<gd::NavigationPoly *, gd::NavPolyTravelCostGreaterThan, gd::NavPolyHeapIndexer>
traversable_polys;
traversable_polys.reserve(polygons.size() * 0.25);

// This is an implementation of the A* algorithm.
int least_cost_id = 0;
int least_cost_id = begin_poly->id;
int prev_least_cost_id = -1;
bool found_route = false;

const gd::Polygon *reachable_end = nullptr;
real_t reachable_d = FLT_MAX;
real_t distance_to_reachable_end = FLT_MAX;
bool is_reachable = true;

while (true) {
Expand All @@ -260,51 +260,57 @@ Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p
real_t poly_enter_cost = 0.0;
real_t poly_travel_cost = least_cost_poly.poly->owner->get_travel_cost();

if (prev_least_cost_id != -1 && (navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self())) {
if (prev_least_cost_id != -1 && navigation_polys[prev_least_cost_id].poly->owner->get_self() != least_cost_poly.poly->owner->get_self()) {
poly_enter_cost = least_cost_poly.poly->owner->get_enter_cost();
}
prev_least_cost_id = least_cost_id;

Vector3 pathway[2] = { connection.pathway_start, connection.pathway_end };
const Vector3 new_entry = Geometry3D::get_closest_point_to_segment(least_cost_poly.entry, pathway);
const real_t new_distance = (least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost) + poly_enter_cost + least_cost_poly.traveled_distance;

int64_t already_visited_polygon_index = navigation_polys.find(gd::NavigationPoly(connection.polygon));

if (already_visited_polygon_index != -1) {
// Polygon already visited, check if we can reduce the travel cost.
gd::NavigationPoly &avp = navigation_polys[already_visited_polygon_index];
if (new_distance < avp.traveled_distance) {
avp.back_navigation_poly_id = least_cost_id;
avp.back_navigation_edge = connection.edge;
avp.back_navigation_edge_pathway_start = connection.pathway_start;
avp.back_navigation_edge_pathway_end = connection.pathway_end;
avp.traveled_distance = new_distance;
avp.entry = new_entry;
const real_t new_traveled_distance = least_cost_poly.entry.distance_to(new_entry) * poly_travel_cost + poly_enter_cost + least_cost_poly.traveled_distance;

// Check if the neighbor polygon has already been processed.
gd::NavigationPoly &neighbor_poly = navigation_polys[connection.polygon->id];
if (neighbor_poly.poly != nullptr) {
// If the neighbor polygon hasn't been traversed yet and the new path leading to
// it is shorter, update the polygon.
if (neighbor_poly.traversable_poly_index < traversable_polys.size() &&
new_traveled_distance < neighbor_poly.traveled_distance) {
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
neighbor_poly.poly->owner->get_travel_cost();
neighbor_poly.entry = new_entry;

// Update the priority of the polygon in the heap.
traversable_polys.shift(neighbor_poly.traversable_poly_index);
}
} else {
// Add the neighbor polygon to the reachable ones.
gd::NavigationPoly new_navigation_poly = gd::NavigationPoly(connection.polygon);
new_navigation_poly.self_id = navigation_polys.size();
new_navigation_poly.back_navigation_poly_id = least_cost_id;
new_navigation_poly.back_navigation_edge = connection.edge;
new_navigation_poly.back_navigation_edge_pathway_start = connection.pathway_start;
new_navigation_poly.back_navigation_edge_pathway_end = connection.pathway_end;
new_navigation_poly.traveled_distance = new_distance;
new_navigation_poly.entry = new_entry;
navigation_polys.push_back(new_navigation_poly);

// Add the neighbor polygon to the polygons to visit.
to_visit.push_back(navigation_polys.size() - 1);
// Initialize the matching navigation polygon.
neighbor_poly.poly = connection.polygon;
neighbor_poly.back_navigation_poly_id = least_cost_id;
neighbor_poly.back_navigation_edge = connection.edge;
neighbor_poly.back_navigation_edge_pathway_start = connection.pathway_start;
neighbor_poly.back_navigation_edge_pathway_end = connection.pathway_end;
neighbor_poly.traveled_distance = new_traveled_distance;
neighbor_poly.distance_to_destination =
new_entry.distance_to(end_point) *
neighbor_poly.poly->owner->get_travel_cost();
neighbor_poly.entry = new_entry;

// Add the polygon to the heap of polygons to traverse next.
traversable_polys.push(&neighbor_poly);
}
}
}

// Removes the least cost polygon from the list of polygons to visit so we can advance.
to_visit.erase(least_cost_id);

// When the list of polygons to visit is empty at this point it means the End Polygon is not reachable
if (to_visit.size() == 0) {
// When the heap of traversable polygons is empty at this point it means the end polygon is
// unreachable.
if (traversable_polys.is_empty()) {
// Thus use the further reachable polygon
ERR_BREAK_MSG(is_reachable == false, "It's not expect to not find the most reachable polygons");
is_reachable = false;
Expand Down Expand Up @@ -366,40 +372,27 @@ Vector<Vector3> NavMap::get_path(Vector3 p_origin, Vector3 p_destination, bool p
return path;
}

// Reset open and navigation_polys
gd::NavigationPoly np = navigation_polys[0];
navigation_polys.clear();
navigation_polys.push_back(np);
to_visit.clear();
to_visit.push_back(0);
least_cost_id = 0;
for (gd::NavigationPoly &nav_poly : navigation_polys) {
nav_poly.poly = nullptr;
}
navigation_polys[begin_poly->id].poly = begin_poly;

least_cost_id = begin_poly->id;
prev_least_cost_id = -1;

reachable_end = nullptr;

continue;
}

// Find the polygon with the minimum cost from the list of polygons to visit.
least_cost_id = -1;
real_t least_cost = FLT_MAX;
for (List<uint32_t>::Element *element = to_visit.front(); element != nullptr; element = element->next()) {
gd::NavigationPoly *np = &navigation_polys[element->get()];
real_t cost = np->traveled_distance;
cost += (np->entry.distance_to(end_point) * np->poly->owner->get_travel_cost());
if (cost < least_cost) {
least_cost_id = np->self_id;
least_cost = cost;
}
}

ERR_BREAK(least_cost_id == -1);
// Pop the polygon with the lowest travel cost from the heap of traversable polygons.
least_cost_id = traversable_polys.pop()->poly->id;

// Stores the further reachable end polygon, in case our goal is not reachable.
// Store the farthest reachable end polygon in case our goal is not reachable.
if (is_reachable) {
real_t d = navigation_polys[least_cost_id].entry.distance_to(p_destination);
if (reachable_d > d) {
reachable_d = d;
real_t distance = navigation_polys[least_cost_id].entry.distance_to(p_destination);
if (distance_to_reachable_end > distance) {
distance_to_reachable_end = distance;
reachable_end = navigation_polys[least_cost_id].poly;
}
}
Expand Down Expand Up @@ -943,29 +936,30 @@ void NavMap::sync() {
}

// Resize the polygon count.
int count = 0;
int polygon_count = 0;
for (const NavRegion *region : regions) {
if (!region->get_enabled()) {
continue;
}
count += region->get_polygons().size();
polygon_count += region->get_polygons().size();
}
polygons.resize(count);
polygons.resize(polygon_count);

// Copy all region polygons in the map.
count = 0;
polygon_count = 0;
for (const NavRegion *region : regions) {
if (!region->get_enabled()) {
continue;
}
const LocalVector<gd::Polygon> &polygons_source = region->get_polygons();
for (uint32_t n = 0; n < polygons_source.size(); n++) {
polygons[count + n] = polygons_source[n];
polygons[polygon_count] = polygons_source[n];
polygons[polygon_count].id = polygon_count;
polygon_count++;
}
count += region->get_polygons().size();
}

_new_pm_polygon_count = polygons.size();
_new_pm_polygon_count = polygon_count;

// Group all edges per key.
HashMap<gd::EdgeKey, Vector<gd::Edge::Connection>, gd::EdgeKey> connections;
Expand Down Expand Up @@ -1136,6 +1130,7 @@ void NavMap::sync() {
// If we have both a start and end point, then create a synthetic polygon to route through.
if (closest_start_polygon && closest_end_polygon) {
gd::Polygon &new_polygon = link_polygons[link_poly_idx++];
new_polygon.id = polygon_count++;
new_polygon.owner = link;

new_polygon.edges.clear();
Expand Down
Loading

0 comments on commit 06e054a

Please sign in to comment.