Skip to content

Commit

Permalink
✨ Added plot_coherent_artifact function
Browse files Browse the repository at this point in the history
  • Loading branch information
s-weigand committed Dec 29, 2022
1 parent f38fbf8 commit 9631fa1
Show file tree
Hide file tree
Showing 2 changed files with 125 additions and 0 deletions.
2 changes: 2 additions & 0 deletions pyglotaran_extras/__init__.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""Pyglotaran extension package with convenience functionality such as plotting."""
from pyglotaran_extras.io.load_data import load_data
from pyglotaran_extras.io.setup_case_study import setup_case_study
from pyglotaran_extras.plotting.plot_coherent_artifact import plot_coherent_artifact
from pyglotaran_extras.plotting.plot_data import plot_data_overview
from pyglotaran_extras.plotting.plot_guidance import plot_guidance
from pyglotaran_extras.plotting.plot_irf_dispersion_center import plot_irf_dispersion_center
Expand All @@ -12,6 +13,7 @@
__all__ = [
"load_data",
"setup_case_study",
"plot_coherent_artifact",
"plot_data_overview",
"plot_overview",
"plot_simple_overview",
Expand Down
123 changes: 123 additions & 0 deletions pyglotaran_extras/plotting/plot_coherent_artifact.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,123 @@
"""Module containing coherent artifact plot functionality."""
from __future__ import annotations

from typing import TYPE_CHECKING
from warnings import warn

import matplotlib.pyplot as plt
import numpy as np
import xarray as xr
from cycler import Cycler

from pyglotaran_extras.plotting.utils import abs_max
from pyglotaran_extras.plotting.utils import add_cycler_if_not_none

if TYPE_CHECKING:
from matplotlib.figure import Figure
from matplotlib.pyplot import Axes


def plot_coherent_artifact(
res: xr.Dataset,
*,
time_range: tuple[float, float] | None = None,
spectral: float = 0,
normalize: bool = False,
figsize: tuple[int, int] = (18, 7),
show_zero_line: bool = True,
cycler: Cycler | None = None,
title: str | None = "Coherent Artifact",
) -> tuple[Figure, Axes]:
"""Plot coherent artifact as IRF derivative components over time and IRFAS over spectral dim.
The IRFAS are the IRF (Instrument Response Function) Associated Spectra.
Parameters
----------
res: xr.Dataset
Result dataset from a pyglotaran optimization.
time_range: tuple[float, float] | None
Start and end time for the IRF derivative plot. Defaults to None which means that
the full time range is used
spectral: float
Value of the spectral axis that should be used to select the data for the IRF derivative
plot this value does not need to be an exact existing value and only has a effect if the
IRF has dispersion. Defaults to 0 which means that the IRF derivative plot at lowest
spectral value will be shown.
normalize: bool
Whether or not to normalize the IRF derivative plot.If the IRF derivative is normalized,
the IRFAS is scaled with the reciprocal of the normalization to compensate for this.
Defaults to False.
figsize: tuple[int, int]
Size of the figure (N, M) in inches. Defaults to (18, 7)
show_zero_line: bool
Whether or not to add a horizontal line at zero. Defaults to True.
cycler: Cycler | None
Plot style cycler to use. Defaults to None, which means that the matplotlib default style
will be used.
title: str | None
Title of the figure. Defaults to "Coherent Artifact".
Returns
-------
tuple[Figure, Axes]
Figure object which contains the plots and the Axes.
"""
fig, axes = plt.subplots(1, 2, figsize=figsize)
add_cycler_if_not_none(axes, cycler)

if (
"coherent_artifact_response" not in res
or "coherent_artifact_associated_spectra" not in res
):
warn(
UserWarning(f"Dataset does not contain coherent artifact data:\n {res.data_vars}"),
stacklevel=2,
)
return fig, axes

irf_max = abs_max(res.coherent_artifact_response, result_dims=("coherent_artifact_order"))
irfas_max = abs_max(
res.coherent_artifact_associated_spectra, result_dims=("coherent_artifact_order")
)
scales = np.sqrt(irfas_max * irf_max)
norm_factor = 1
irf_y_label = "amplitude"
irfas_y_label = "ΔA"

if normalize is True:
norm_factor = scales.max()
irf_y_label = f"normalized {irf_y_label}"

plot_slice_irf = (
res.coherent_artifact_response.sel(spectral=spectral, method="nearest")
/ irf_max
* scales
/ norm_factor
)
irf_sel_kwargs = (
{"time": slice(time_range[0], time_range[1])} if time_range is not None else {}
)
plot_slice_irf.sel(**irf_sel_kwargs).plot.line(x="time", ax=axes[0])
axes[0].set_title("IRF Derivatives")
axes[0].set_ylabel(f"{irf_y_label} (a.u.)")

plot_slice_irfas = res.coherent_artifact_associated_spectra / irfas_max * scales * norm_factor
plot_slice_irfas.plot.line(x="spectral", ax=axes[1])
axes[1].get_legend().remove()
axes[1].set_title("IRFAS")
axes[1].set_ylabel(f"{irfas_y_label} (mOD)")

if show_zero_line is True:
axes[0].axhline(0, color="k", linewidth=1)
axes[1].axhline(0, color="k", linewidth=1)

#
if res.coords["coherent_artifact_order"][0] == 1:
axes[0].legend(
[f"{int(ax_label)-1}" for ax_label in res.coords["coherent_artifact_order"]],
title="coherent_artifact_order",
)
if title:
fig.suptitle(title, fontsize=16)
return fig, axes

0 comments on commit 9631fa1

Please sign in to comment.