Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Gather elements Operator #468

Merged
merged 9 commits into from
Nov 30, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,11 @@ All notable changes to this project will be documented in this file.

The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/), and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [Unreleased] - 2023-11-20

## Added
- Gather Elements Operator.

## [Unreleased] - 2023-11-06

## Added
Expand Down
1 change: 1 addition & 0 deletions docs/SUMMARY.md
Original file line number Diff line number Diff line change
Expand Up @@ -105,6 +105,7 @@
* [tensor.reduce\_sum\_square](framework/operators/tensor/tensor.reduce\_sum\_square.md)
* [tensor.reduce\_l2](framework/operators/tensor/tensor.reduce\_l2.md)
* [tensor.reduce\_l1](framework/operators/tensor/tensor.reduce\_l1.md)
* [tensor.gather\_elements](framework/operators/tensor/tensor.gather\_elements.md)
* [tensor.sequence\_length](framework/operators/tensor/tensor.sequence\_length.md)
* [tensor.sequence\_at](framework/operators/tensor/tensor.sequence\_at.md)
* [tensor.reduce\_min](framework/operators/tensor/tensor.reduce\_min.md)
Expand Down
1 change: 1 addition & 0 deletions docs/framework/compatibility.md
Original file line number Diff line number Diff line change
Expand Up @@ -86,6 +86,7 @@ You can see below the list of current supported ONNX Operators:
| [ConstantOfShape](operators/tensor/tensor.constant_of_shape.md) | :white\_check\_mark: |
| [ReduceL1](operators/tensor/tensor.reduce\_l1.md) | :white\_check\_mark: |
| [ReduceL2](operators/tensor/tensor.reduce\_l2.md) | :white\_check\_mark: |
| [GatherElements](operators/tensor/tensor.gather/_elements.md) | :white\_check\_mark: |
| [SequenceLength](operators/tensor/tensor.sequence\_length.md) | :white\_check\_mark: |
| [SequenceAt](operators/tensor/tensor.sequence\_at.md) | :white\_check\_mark: |
| [SequenceConstruct](operators/tensor/tensor.sequence\_construct.md) | :white\_check\_mark: |
Expand Down
3 changes: 3 additions & 0 deletions docs/framework/operators/tensor/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,9 @@ use orion::operators::tensor::TensorTrait;
| [`tensor.scatter`](tensor.scatter.md) | Produces a copy of input data, and updates value to values specified by updates at specific index positions specified by indices. |
| [`tensor.reduce_sum_square`](tensor.reduce\_sum\_square.md) | Computes the sum square of the input tensor's elements along the provided axes. |
| [`tensor.reduce_l2`](tensor.reduce\_l2.md) | Computes the L2 norm of the input tensor's elements along the provided axes. |
| [`tensor.gather_elements`](tensor.gather\_elements.md) | GatherElements is an indexing operation that produces its output by indexing into the input data tensor at index positions determined by elements of the indices tensor. |
| [`tensor.reduce_min`](tensor.reduce\_min.md) | Computes the min of the input tensor's elements along the provided axes. |
| [`tensor.sequence_construct`](tensor.sequence\_construct.md) | Constructs a tensor sequence containing the input tensors. |
| [`tensor.sequence_length`](tensor.sequence\_length.md) | Returns the length of the input sequence. |
| [`tensor.shrink`](tensor.shrink.md) | Shrinks the input tensor element-wise to the output tensor with the same datatype and shape based on a defined formula. |
| [`tensor.sequence_empty`](tensor.sequence\_empty.md) | Returns an empty tensor sequence. |
Expand Down
47 changes: 47 additions & 0 deletions docs/framework/operators/tensor/tensor.gather_elements.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# tensor.gather_elements

```rust
fn gather_elements(self: @Tensor<T>, indices: Tensor<T>, axis: Option<usize>) -> Tensor<T>;
```

GatherElements is an indexing operation that produces its output by indexing into the input data tensor at index positions determined by elements of the indices tensor.

## Args

* `self`(`@Tensor<T>`) - The input tensor.
* `indices`(`Tensor<T>`) - Tensor of indices.
* `axis`(`Option<usize>`) - Axis to gather_elements on. Default: axis=0.

## Panics

* Panics if index values are not within bounds [-s, s-1] along axis of size s.

## Returns

A new `Tensor<T>` .

## Example

```rust
use array::{ArrayTrait, SpanTrait};

use orion::operators::tensor::{TensorTrait, Tensor, U32Tensor};

fn gather_elements_example() -> Tensor<u32> {
let tensor = TensorTrait::<u32>::new(
shape: array![3, 3].span(),
data: array![[ 1, 2, 3],[4, 5, 6], [7, 8, 9]].span(),
);
let indices = TensorTrait::<u32>::new(
shape: array![1, 2, 0].span(),
data: array![2, 0, 0].span(),
);

return tensor.gather_elements(
indices: indices,
axis: Option::None(()),
);
}
>>> [[4. 8. 3.]
[7. 2. 3.]]
```
268 changes: 268 additions & 0 deletions nodegen/node/gather_elements.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,268 @@
import numpy as np
from nodegen.node import RunAll
from ..helpers import make_test, to_fp, Tensor, Dtype, FixedImpl, Trait

def gather_elements(data, indices, axis=0): # type: ignore
data_swaped = np.swapaxes(data, 0, axis)
index_swaped = np.swapaxes(indices, 0, axis)
gathered = np.choose(index_swaped, data_swaped, mode="wrap")
y = np.swapaxes(gathered, 0, axis)
return y

class Gather_elements(RunAll):

@staticmethod
def gather_elements_fp16x16():
def gather_elements_3D():
def default():
x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
x2 = np.random.randint(low = 0,high=2, size=(3,3,3)).astype(np.uint32)
y = gather_elements(x1, x2, axis=0)

x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.FP16x16, y.shape, to_fp(
y.flatten(), FixedImpl.FP16x16))

name = "gather_elements_fp16x16_3d_default"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))",
name= name)

def axis1():
x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
x2 = np.random.randint(low = 0,high=3, size=(3,3,3)).astype(np.uint32)
y = gather_elements(x1, x2, axis=1)

x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.FP16x16, y.shape, to_fp(
y.flatten(), FixedImpl.FP16x16))

name = "gather_elements_fp16x16_3d_axis1"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(1))",
name= name)

def axis2():
x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
x2 = np.random.randint(low = 0,high=3, size=(3,3,3)).astype(np.uint32)
y = gather_elements(x1, x2, axis=2)

x1 = Tensor(Dtype.FP16x16, x1.shape, to_fp(x1.flatten(), FixedImpl.FP16x16))
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.FP16x16, y.shape, to_fp(
y.flatten(), FixedImpl.FP16x16))

name = "gather_elements_fp16x16_3d_axis2"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(2))",
name= name)

default()
axis1()
axis2()
gather_elements_3D()


@staticmethod
def gather_elements_fp8x23():
def gather_elements_3D():
def default():
x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
x2 = np.random.randint(low = 0,high=2, size=(3,3,3)).astype(np.int64)
y = gather_elements(x1, x2, axis=0)

x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))

name = "gather_elements_fp8x23_3d_default"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))",
name= name)

def axis1():
x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
x2 = np.random.randint(low = 0,high=3, size=(3,3,3)).astype(np.int64)
y = gather_elements(x1, x2, axis=1)

x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))

name = "gather_elements_fp8x23_3d_axis1"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(1))",
name= name)

def axis2():
x1 = np.arange(0,27).reshape(3,3,3).astype(np.int64)
x2 = np.random.randint(low = 0,high=3, size=(3,3,3)).astype(np.int64)
y = gather_elements(x1, x2, axis=2)

x1 = Tensor(Dtype.FP8x23, x1.shape, to_fp(x1.flatten(), FixedImpl.FP8x23))
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.FP8x23, y.shape, to_fp(y.flatten(), FixedImpl.FP8x23))

name = "gather_elements_fp8x23_3d_axis2"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(2))",
name= name)

default()
axis1()
axis2()
gather_elements_3D()


@staticmethod
def gather_elements_i8():
def gather_elements_3D():
def default():
x1 = np.arange(0,9).reshape(3,3).astype(np.int8)
x2 = np.random.randint(low = 0,high=2, size=(3,3)).astype(np.int8)
y = gather_elements(x1, x2, axis=0)

x1 = Tensor(Dtype.I8, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.I8, y.shape, y.flatten())

name = "gather_elements_i8_3d_default"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))",
name= name)

def axis1():
x1 = np.arange(0,9).reshape(3,3).astype(np.int8)
x2 = np.random.randint(low = 0,high=2, size=(3,3)).astype(np.int8)
y = gather_elements(x1, x2, axis=1)

x1 = Tensor(Dtype.I8, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.I8, y.shape, y.flatten())

name = "gather_elements_i8_3d_axis1"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(1))",
name= name)

default()
axis1()
gather_elements_3D()


@staticmethod
def gather_elements_i32():
def gather_elements_3D():
def default():
x1 = np.arange(0,24).reshape(4,2,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=2, size=(5,2,3)).astype(np.int32)
y = gather_elements(x1, x2, axis=0)

x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.I32, y.shape, y.flatten())

name = "gather_elements_i32_3d_default"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))",
name= name)

def axis1():
x1 = np.arange(0,24).reshape(4,2,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=2, size=(4,3,3)).astype(np.int32)
y = gather_elements(x1, x2, axis=1)

x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.I32, y.shape, y.flatten())

name = "gather_elements_i32_3d_axis1"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(1))",
name= name)

def axis2():
x1 = np.arange(0,24).reshape(4,2,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=2, size=(4,2,4)).astype(np.int32)
y = gather_elements(x1, x2, axis=2)

x1 = Tensor(Dtype.I32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.I32, y.shape, y.flatten())

name = "gather_elements_i32_3d_axis2"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(2))",
name= name)

default()
axis1()
axis2()
gather_elements_3D()

@staticmethod
def gather_elements_u32():
def gather_elements_3D():
def default():
x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=3, size=(10,3,4,3)).astype(np.int32)
y = gather_elements(x1, x2, axis=0)

x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())

name = "gather_elements_u32_default"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(0))",
name= name)

def axis1():
x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=3, size=(3,5,4,3)).astype(np.int32)
y = gather_elements(x1, x2, axis=1)

x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())

name = "gather_elements_u32_axis1"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(1))",
name= name)

def axis2():
x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=3, size=(3,3,4,3)).astype(np.int32)
y = gather_elements(x1, x2, axis=2)

x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())

name = "gather_elements_u32_axis2"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(2))",
name= name)

def axis3():
x1 = np.arange(0,108).reshape(3,3,4,3).astype(np.int32)
x2 = np.random.randint(low = 0,high=3, size=(3,3,4,6)).astype(np.int32)
y = gather_elements(x1, x2, axis=3)

x1 = Tensor(Dtype.U32, x1.shape, x1.flatten())
x2 = Tensor(Dtype.U32, x2.shape, x2.flatten())
y = Tensor(Dtype.U32, y.shape, y.flatten())

name = "gather_elements_u32_axis3"
make_test(
inputs = [x1, x2], output = y, func_sig = "input_0.gather_elements(indices:input_1, axis:Option::Some(3))",
name= name)

default()
axis1()
axis2()
axis3()
gather_elements_3D()
Loading
Loading