Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error With Docker #2535

Closed
rpl-zhichao-zheng opened this issue Aug 6, 2023 · 6 comments · Fixed by #2884
Closed

Error With Docker #2535

rpl-zhichao-zheng opened this issue Aug 6, 2023 · 6 comments · Fixed by #2884

Comments

@rpl-zhichao-zheng
Copy link

I was running it with docker command:

sudo docker run --gpus all -v /mnt/data/llama.cpp/models:/models local/llama.cpp:full-cuda --run -m /models/Llama-2-7B-Chat-GGML/llama-2-7b-chat.ggmlv3.q4_0.bin -p "Building a website can be done in 10 simple steps:" -n 512 --n-gpu-layers 1

It returns me this error:
usage: ./main [options]

options:
-h, --help show this help message and exit
-i, --interactive run in interactive mode
--interactive-first run in interactive mode and wait for input right away
-ins, --instruct run in instruction mode (use with Alpaca models)
--multiline-input allows you to write or paste multiple lines without ending each in ''
-r PROMPT, --reverse-prompt PROMPT
halt generation at PROMPT, return control in interactive mode
(can be specified more than once for multiple prompts).
--color colorise output to distinguish prompt and user input from generations
-s SEED, --seed SEED RNG seed (default: -1, use random seed for < 0)
-t N, --threads N number of threads to use during computation (default: 16)
-p PROMPT, --prompt PROMPT
prompt to start generation with (default: empty)
-e process prompt escapes sequences (\n, \r, \t, ', ", \)
--prompt-cache FNAME file to cache prompt state for faster startup (default: none)
--prompt-cache-all if specified, saves user input and generations to cache as well.
not supported with --interactive or other interactive options
--prompt-cache-ro if specified, uses the prompt cache but does not update it.
--random-prompt start with a randomized prompt.
--in-prefix-bos prefix BOS to user inputs, preceding the --in-prefix string
--in-prefix STRING string to prefix user inputs with (default: empty)
--in-suffix STRING string to suffix after user inputs with (default: empty)
-f FNAME, --file FNAME
prompt file to start generation.
-n N, --n-predict N number of tokens to predict (default: -1, -1 = infinity)
-c N, --ctx-size N size of the prompt context (default: 512)
-b N, --batch-size N batch size for prompt processing (default: 512)
-gqa N, --gqa N grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: 1)
-eps N, --rms-norm-eps N rms norm eps (TEMP!!! use 1e-5 for LLaMAv2) (default: 5.0e-06)
--top-k N top-k sampling (default: 40, 0 = disabled)
--top-p N top-p sampling (default: 0.9, 1.0 = disabled)
--tfs N tail free sampling, parameter z (default: 1.0, 1.0 = disabled)
--typical N locally typical sampling, parameter p (default: 1.0, 1.0 = disabled)
--repeat-last-n N last n tokens to consider for penalize (default: 64, 0 = disabled, -1 = ctx_size)
--repeat-penalty N penalize repeat sequence of tokens (default: 1.1, 1.0 = disabled)
--presence-penalty N repeat alpha presence penalty (default: 0.0, 0.0 = disabled)
--frequency-penalty N repeat alpha frequency penalty (default: 0.0, 0.0 = disabled)
--mirostat N use Mirostat sampling.
Top K, Nucleus, Tail Free and Locally Typical samplers are ignored if used.
(default: 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0)
--mirostat-lr N Mirostat learning rate, parameter eta (default: 0.1)
--mirostat-ent N Mirostat target entropy, parameter tau (default: 5.0)
-l TOKEN_ID(+/-)BIAS, --logit-bias TOKEN_ID(+/-)BIAS
modifies the likelihood of token appearing in the completion,
i.e. --logit-bias 15043+1 to increase likelihood of token ' Hello',
or --logit-bias 15043-1 to decrease likelihood of token ' Hello'
--grammar GRAMMAR BNF-like grammar to constrain generations (see samples in grammars/ dir)
--grammar-file FNAME file to read grammar from
--cfg-negative-prompt PROMPT
negative prompt to use for guidance. (default: empty)
--cfg-scale N strength of guidance (default: 1.000000, 1.0 = disable)
--rope-freq-base N RoPE base frequency (default: 10000.0)
--rope-freq-scale N RoPE frequency scaling factor (default: 1)
--ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)
--no-penalize-nl do not penalize newline token
--memory-f32 use f32 instead of f16 for memory key+value (default: disabled)
not recommended: doubles context memory required and no measurable increase in quality
--temp N temperature (default: 0.8)
--perplexity compute perplexity over each ctx window of the prompt
--hellaswag compute HellaSwag score over random tasks from datafile supplied with -f
--hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: 400)
--keep N number of tokens to keep from the initial prompt (default: 0, -1 = all)
--chunks N max number of chunks to process (default: -1, -1 = all)
--mlock force system to keep model in RAM rather than swapping or compressing
--no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)
--numa attempt optimizations that help on some NUMA systems
if run without this previously, it is recommended to drop the system page cache before using this
see #1437
-ngl N, --n-gpu-layers N
number of layers to store in VRAM
-ts SPLIT --tensor-split SPLIT
how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1
-mg i, --main-gpu i the GPU to use for scratch and small tensors
-lv, --low-vram don't allocate VRAM scratch buffer
-mmq, --mul-mat-q use experimental mul_mat_q CUDA kernels instead of cuBLAS. TEMP!!!
Reduces VRAM usage by 700/970/1430 MiB for 7b/13b/33b but prompt processing speed
is still suboptimal, especially q2_K, q3_K, q5_K, and q6_K.
--mtest compute maximum memory usage
--export export the computation graph to 'llama.ggml'
--verbose-prompt print prompt before generation
--lora FNAME apply LoRA adapter (implies --no-mmap)
--lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter
-m FNAME, --model FNAME
model path (default: models/7B/ggml-model.bin)

error: unknown argument: -m /models/Llama-2-7B-Chat-GGML/llama-2-7b-chat.ggmlv3.q4_0.bin -p Building a website can be done in 10 simple steps: -n 512 --n-gpu-layers 1
--simple-io use basic IO for better compatibility in subprocesses and limited consoles

Environment and Context

Please provide detailed information about your computer setup. This is important in case the issue is not reproducible except for under certain specific conditions.

  • Physical (or virtual) hardware you are using, e.g. for Linux:

$ lscpu

  • Operating System, e.g. for Linux:

$ uname -a

  • SDK version, e.g. for Linux:
$ python3 --version
$ make --version
$ g++ --version

Failure Information (for bugs)

Please help provide information about the failure if this is a bug. If it is not a bug, please remove the rest of this template.

Steps to Reproduce

Please provide detailed steps for reproducing the issue. We are not sitting in front of your screen, so the more detail the better.

  1. step 1
  2. step 2
  3. step 3
  4. etc.

Failure Logs

Please include any relevant log snippets or files. If it works under one configuration but not under another, please provide logs for both configurations and their corresponding outputs so it is easy to see where behavior changes.

Also, please try to avoid using screenshots if at all possible. Instead, copy/paste the console output and use Github's markdown to cleanly format your logs for easy readability.

Example environment info:

llama.cpp$ git log | head -1
commit 2af23d30434a677c6416812eea52ccc0af65119c

llama.cpp$ lscpu | egrep "AMD|Flags"
Vendor ID:                       AuthenticAMD
Model name:                      AMD Ryzen Threadripper 1950X 16-Core Processor
Flags:                           fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc cpuid extd_apicid amd_dcm aperfmperf rapl pni pclmulqdq monitor ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw skinit wdt tce topoext perfctr_core perfctr_nb bpext perfctr_llc mwaitx cpb hw_pstate ssbd ibpb vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt sha_ni xsaveopt xsavec xgetbv1 xsaves clzero irperf xsaveerptr arat npt lbrv svm_lock nrip_save tsc_scale vmcb_clean flushbyasid decodeassists pausefilter pfthreshold avic v_vmsave_vmload vgif overflow_recov succor smca sme sev
Virtualization:                  AMD-V

llama.cpp$ python3 --version
Python 3.10.9

llama.cpp$ pip list | egrep "torch|numpy|sentencepiece"
numpy                         1.24.2
numpydoc                      1.5.0
sentencepiece                 0.1.97
torch                         1.13.1
torchvision                   0.14.1

llama.cpp$ make --version | head -1
GNU Make 4.3

$ md5sum ./models/65B/ggml-model-q4_0.bin
dbdd682cce80e2d6e93cefc7449df487  ./models/65B/ggml-model-q4_0.bin

Example run with the Linux command perf

llama.cpp$ perf stat ./main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p "Please close your issue when it has been answered."
main: seed = 1679149377
llama_model_load: loading model from './models/65B/ggml-model-q4_0.bin' - please wait ...
llama_model_load: n_vocab = 32000
llama_model_load: n_ctx   = 512
llama_model_load: n_embd  = 8192
llama_model_load: n_mult  = 256
llama_model_load: n_head  = 64
llama_model_load: n_layer = 80
llama_model_load: n_rot   = 128
llama_model_load: f16     = 2
llama_model_load: n_ff    = 22016
llama_model_load: n_parts = 8
llama_model_load: ggml ctx size = 41477.73 MB
llama_model_load: memory_size =  2560.00 MB, n_mem = 40960
llama_model_load: loading model part 1/8 from './models/65B/ggml-model-q4_0.bin'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 2/8 from './models/65B/ggml-model-q4_0.bin.1'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 3/8 from './models/65B/ggml-model-q4_0.bin.2'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 4/8 from './models/65B/ggml-model-q4_0.bin.3'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 5/8 from './models/65B/ggml-model-q4_0.bin.4'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 6/8 from './models/65B/ggml-model-q4_0.bin.5'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 7/8 from './models/65B/ggml-model-q4_0.bin.6'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723
llama_model_load: loading model part 8/8 from './models/65B/ggml-model-q4_0.bin.7'
llama_model_load: .......................................................................................... done
llama_model_load: model size =  4869.09 MB / num tensors = 723

system_info: n_threads = 16 / 32 | AVX = 1 | AVX2 = 1 | AVX512 = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | VSX = 0 |

main: prompt: 'Please close your issue when it has been answered.'
main: number of tokens in prompt = 11
     1 -> ''
 12148 -> 'Please'
  3802 -> ' close'
   596 -> ' your'
  2228 -> ' issue'
   746 -> ' when'
   372 -> ' it'
   756 -> ' has'
  1063 -> ' been'
  7699 -> ' answered'
 29889 -> '.'

sampling parameters: temp = 0.800000, top_k = 40, top_p = 0.950000, repeat_last_n = 64, repeat_penalty = 1.300000


Please close your issue when it has been answered.
@duncan-donut: I'm trying to figure out what kind of "support" you need for this script and why, exactly? Is there a question about how the code works that hasn't already been addressed in one or more comments below this ticket, or are we talking something else entirely like some sorta bugfixing job because your server setup is different from mine??
I can understand if your site needs to be running smoothly and you need help with a fix of sorts but there should really be nothing wrong here that the code itself could not handle. And given that I'm getting reports about how it works perfectly well on some other servers, what exactly are we talking? A detailed report will do wonders in helping us get this resolved for ya quickly so please take your time and describe the issue(s) you see as clearly & concisely as possible!!
@duncan-donut: I'm not sure if you have access to cPanel but you could try these instructions. It is worth a shot! Let me know how it goes (or what error message, exactly!) when/if ya give that code a go? [end of text]


main: mem per token = 71159620 bytes
main:     load time = 19309.95 ms
main:   sample time =   168.62 ms
main:  predict time = 223895.61 ms / 888.47 ms per token
main:    total time = 246406.42 ms

 Performance counter stats for './main -m ./models/65B/ggml-model-q4_0.bin -t 16 -n 1024 -p Please close your issue when it has been answered.':

        3636882.89 msec task-clock                #   14.677 CPUs utilized
             13509      context-switches          #    3.714 /sec
              2436      cpu-migrations            #    0.670 /sec
          10476679      page-faults               #    2.881 K/sec
    13133115082869      cycles                    #    3.611 GHz                      (16.77%)
       29314462753      stalled-cycles-frontend   #    0.22% frontend cycles idle     (16.76%)
    10294402631459      stalled-cycles-backend    #   78.39% backend cycles idle      (16.74%)
    23479217109614      instructions              #    1.79  insn per cycle
                                                  #    0.44  stalled cycles per insn  (16.76%)
     2353072268027      branches                  #  647.002 M/sec                    (16.77%)
        1998682780      branch-misses             #    0.08% of all branches          (16.76%)

     247.802177522 seconds time elapsed

    3618.573072000 seconds user
      18.491698000 seconds sys
@JohanAR
Copy link
Contributor

JohanAR commented Aug 7, 2023

Looks like the arguments you send are meant for the "main" program, while the docker image you use has tools.sh as entrypoint. Try building .devops/main-cuda.Dockerfile instead.

@MichaelDays
Copy link

MichaelDays commented Aug 7, 2023

If, as @JohanAR suggests, you check and are running the right container, see if removing the double quotes from around $arg2 on line 18 of tools.sh and rebuilding the container helps.

(Reason: main in the output above was invoked, but looks like it was given a single argument value made of all the flags and values you’ve supplied glued together - removing the double quotes would be a hacky way of letting shell split the arg2 contents back out into individual arguments and values)

./main "$arg2"

@JohanAR
Copy link
Contributor

JohanAR commented Aug 7, 2023

Ahh, I missed the "--run" argument..

@SlyEcho
Copy link
Collaborator

SlyEcho commented Aug 9, 2023

There is a PR to replace the shell script with a Python one so the argument parsing is more robust: #1686

Maybe it should be merged now?

@DKAndreasen
Copy link

DKAndreasen commented Aug 29, 2023

To get it working I had to replace "$arg2" with "$@" in tools.sh and then rebuild. Then the arg2 assignment can be skipped

SlyEcho added a commit that referenced this issue Aug 29, 2023
This should allow passing multiple arguments to containers with
the full image that are using the tools.sh frontend.

Fix from #2535 (comment)
@SlyEcho SlyEcho linked a pull request Aug 29, 2023 that will close this issue
@SlyEcho
Copy link
Collaborator

SlyEcho commented Aug 29, 2023

Thanks, @DKAndreasen, that seems to do the trick. I made a PR.

SlyEcho added a commit that referenced this issue Aug 30, 2023
* [Docker] fix tools.sh argument passing.

This should allow passing multiple arguments to containers with
the full image that are using the tools.sh frontend.

Fix from #2535 (comment)
YuMJie pushed a commit to YuMJie/powerinfer that referenced this issue Oct 25, 2024
* [Docker] fix tools.sh argument passing.

This should allow passing multiple arguments to containers with
the full image that are using the tools.sh frontend.

Fix from ggerganov/llama.cpp#2535 (comment)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging a pull request may close this issue.

5 participants