Skip to content

Commit

Permalink
Update exporter and support scaling
Browse files Browse the repository at this point in the history
  • Loading branch information
slaren committed Apr 8, 2023
1 parent a4539e1 commit d00017b
Show file tree
Hide file tree
Showing 2 changed files with 90 additions and 31 deletions.
98 changes: 73 additions & 25 deletions convert-lora-to-ggml.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
import json
import os
import re
import struct
Expand All @@ -14,15 +15,18 @@
class UnquantizedDataType:
name: str

DT_F16 = UnquantizedDataType('F16')
DT_F32 = UnquantizedDataType('F32')

DT_F16 = UnquantizedDataType("F16")
DT_F32 = UnquantizedDataType("F32")


@dataclass(frozen=True)
class QuantizedDataType:
groupsize: int
have_addends: bool
have_g_idx: bool


DataType = UnquantizedDataType

DATA_TYPE_TO_FTYPE: dict[DataType, int] = {
Expand All @@ -35,17 +39,28 @@ class QuantizedDataType:
DT_F32: np.dtype(np.float32),
}

NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
NUMPY_TYPE_TO_DATA_TYPE: dict[np.dtype[Any], DataType] = {
dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()
}

HF_SUBLAYER_TO_GGML = {
"self_attn.q_proj": "attention.wq.weight",
"self_attn.k_proj": "attention.wk.weight",
"self_attn.v_proj": "attention.wv.weight",
"self_attn.o_proj": "attention.wo.weight",
# "embed_tokens.weight": "tok_embeddings.weight",
# "norm.weight": "norm.weight",
# "lm_head.weight": "output.weight",
# "mlp.gate_proj": "feed_forward.w1.weight",
# "mlp.down_proj": "feed_forward.w2.weight",
# "mlp.up_proj": "feed_forward.w3.weight",
# "input_layernorm": "attention_norm.weight",
# "post_attention_layernorm": "ffn_norm.weight",
}


def translate_tensor_name(t):
match = re.match(r'.*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight', t)
match = re.match(r".*layers\.(\d+)\.(\w+\.\w+)\.lora_(A|B)\.weight", t)
if match:
nn = match.group(1)
sub_layer = match.group(2)
Expand All @@ -54,50 +69,83 @@ def translate_tensor_name(t):
sub_layer_renamed = HF_SUBLAYER_TO_GGML.get(sub_layer)
if sub_layer_renamed is None:
print(f"Error: unrecognized sub-layer {sub_layer} in tensor {t}")
exit(1)
sys.exit(1)

output_string = f"layers.{nn}.{HF_SUBLAYER_TO_GGML[sub_layer]}.lora{lora_type}"
return output_string
else:
print(f"Error: unrecognized tensor {t}")
exit(1)
sys.exit(1)


def write_file_header(fout):
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
def write_file_header(fout, params):
fout.write(b"ggla"[::-1]) # magic (ggml lora)
fout.write(struct.pack("i", 1)) # file version
fout.write(struct.pack("ii", params["r"], params["lora_alpha"]))


def write_tensor_header(self, name: str, shape: Sequence[int], data_type: 1) -> None:
sname = name.encode('utf-8')
fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]]))
sname = name.encode("utf-8")
fout.write(
struct.pack(
"iii",
len(shape),
len(sname),
DATA_TYPE_TO_FTYPE[NUMPY_TYPE_TO_DATA_TYPE[data_type]],
)
)
fout.write(struct.pack("i" * len(shape), *shape[::-1]))
fout.write(sname)
fout.seek((fout.tell() + 31) & -32)


if len(sys.argv) < 2:
print(f"Usage: python {sys.argv[0]} adapter_model.bin [ggml_adapter_model.bin]")

if len(sys.argv) != 2:
print(f"Usage: python {sys.argv[0]} <path>")
print(
"Path must contain HuggingFace PEFT LoRA files 'adapter_config.json' and 'adapter_model.bin'"
)
sys.exit(1)

input_json = os.path.join(sys.argv[1], "adapter_config.json")
input_model = os.path.join(sys.argv[1], "adapter_model.bin")
output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin")

model = torch.load(input_model, map_location="cpu")

with open(input_json, "r") as f:
params = json.load(f)

if params["peft_type"] != "LORA":
print(f"Error: unsupported adapter type {params['peft_type']} expected LORA")
sys.exit(1)

input_path = sys.argv[1]
if len(sys.argv) > 2:
output_path = sys.argv[2]
else:
output_filename = f"ggml_{os.path.basename(input_path)}"
output_path = os.path.join(os.path.dirname(input_path), output_filename)
if params["fan_in_fan_out"] == True:
print("Error: param fan_in_fan_out is not supported")
sys.exit(1)

model = torch.load(input_path, map_location="cpu")
# TODO: these seem to be layers that have been trained but without lora.
# doesn't seem widely used but eventually should be supported
if params["modules_to_save"] is not None and len(params["modules_to_save"]) > 0:
print("Error: param modules_to_save is not supported")
sys.exit(1)

with open(output_path, "wb") as fout:
write_file_header(fout)
fout.truncate()

write_file_header(fout, params)
for k, v in model.items():
# since ggml doesn't always support other types for the second operand,
# the tensors are always converted and exported as f32
t = v.float().numpy()
if v.dtype != torch.float16 or v.dtype != torch.float32:
v = v.float()

t = v.numpy()
if "lora_A" in k:
t = t.T
print(f"{k} => {translate_tensor_name(k)} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB")
print(
f"{k} => {translate_tensor_name(k)} {t.shape} {t.dtype} {t.nbytes/1024/1024:.2f}MB"
)
write_tensor_header(fout, translate_tensor_name(k), t.shape, t.dtype)
t.tofile(fout)

print(f"Converted {input_path} to {output_path}")
print(f"Converted {input_json} and {input_model} to {output_path}")
23 changes: 17 additions & 6 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1714,6 +1714,15 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
}
}

int32_t lora_r;
int32_t lora_alpha;
fin.read((char *) &lora_r, sizeof(lora_r));
fin.read((char *) &lora_alpha, sizeof(lora_alpha));
float scaling = (float)lora_alpha / (float)lora_r;

fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);


// create a temporary ggml context to store the lora tensors
std::vector<uint8_t> buf(1024 * 1024 * 100);
struct ggml_init_params params;
Expand Down Expand Up @@ -1815,19 +1824,21 @@ int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lor
// w = w + BA*s
ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraB, loraA);

//if (true) {
// ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, 1.0f);
// BA = ggml_scale(lora_ctx, BA, scale_tensor);
//}
ggml_tensor * r = ggml_add(lora_ctx, tensor, BA);
if (scaling != 1.0f) {
ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
BA = ggml_scale(lora_ctx, BA, scale_tensor);
}

ggml_tensor * r = ggml_add_inplace(lora_ctx, tensor, BA);
//ggml_tensor * r = ggml_add(lora_ctx, tensor, BA);
//r = ggml_cpy(lora_ctx, r, tensor);

struct ggml_cgraph gf = ggml_build_forward(r);
gf.n_threads = n_threads;
ggml_graph_compute(lora_ctx, &gf);

// hack until ggml_cpy supports quantized tensors
memcpy(tensor->data, r->data, ggml_nbytes(tensor));
// memcpy(tensor->data, r->data, ggml_nbytes(tensor));

// we won't need these tensors again, reset the context to save memory
ggml_free(lora_ctx);
Expand Down

0 comments on commit d00017b

Please sign in to comment.