Skip to content

Commit

Permalink
mamba : simplify the conv step with a self-overlapping view
Browse files Browse the repository at this point in the history
Turns out the conv_state can be made smaller by one column.
Note that this breaks existing GGUFs of Mamba,
because the key_value_length field is tied to the conv_state size.

Convolution with a self-overlapping view is cool!
And it's much simpler than what I initially thought would be necessary
to make the convolution step work with more than 1 token at a time.

Next step is to make the SSM step work on batches of tokens too,
and thus I need to figure out a way to make a parallel selective scan
which will keep the ssm_state small and won't make it bigger
by a factor of (n_layer * batch_size).

* llama : fix Mamba KV self size wrongly displaying as f16 instead of f32

Relatedly, I also tried to see if other types than f32 worked for the states,
but they don't, because of the operators used.
It's probably better anyway to keep lots of precision there,
since the states are small anyway.
  • Loading branch information
compilade committed Feb 4, 2024
1 parent ba94c9d commit 7016fe5
Show file tree
Hide file tree
Showing 2 changed files with 63 additions and 47 deletions.
6 changes: 4 additions & 2 deletions convert-hf-to-gguf.py
Original file line number Diff line number Diff line change
Expand Up @@ -1510,10 +1510,12 @@ def set_gguf_parameters(self):
self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
self.gguf_writer.add_embedding_length(d_model)
self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
self.gguf_writer.add_head_count(d_inner)
self.gguf_writer.add_head_count(d_inner) # the number of rows in conv_state and ssm_state
self.gguf_writer.add_block_count(self.hparams["n_layer"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-5))
self.gguf_writer.add_key_length(self.hparams.get("d_conv", 4))
# NOTE: (ab)using the KV cache metadata to store dimensions for conv_state and ssm_state
# Since the first column of the conv_state is shifted out each time, it's not actually needed
self.gguf_writer.add_key_length(self.hparams.get("d_conv", 4) - 1)
self.gguf_writer.add_value_length(self.hparams.get("d_state", 16))
self.gguf_writer.add_file_type(self.ftype)

Expand Down
104 changes: 59 additions & 45 deletions llama.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1862,9 +1862,6 @@ static bool llama_kv_cache_init(
if (model.arch == LLM_ARCH_MAMBA) {
// only one slot is needed for Mamba
n_ctx = 1;
// it's probably best to keep as much precision as possible for the states
ktype = GGML_TYPE_F32;
vtype = GGML_TYPE_F32;
}

cache.has_shift = false;
Expand Down Expand Up @@ -4179,7 +4176,7 @@ static bool llm_load_tensors(
} break;
case LLM_ARCH_MAMBA:
{
const int64_t d_conv = hparams.n_embd_head_k;
const int64_t d_conv = hparams.n_embd_head_k + 1;
const int64_t d_state = hparams.n_embd_head_v;
const int64_t d_inner = hparams.n_head;
// FIXME: ceiling instead of floor
Expand Down Expand Up @@ -6917,28 +6914,27 @@ struct llm_build_context {
struct ggml_cgraph * build_mamba() {
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);

const bool use_conv = batch.n_tokens > 1;
GGML_ASSERT(use_conv == false); // TODO: implement
const int32_t n_tok = batch.n_tokens;

// hopefully the compiler does constant folding
const int64_t d_model = n_embd;
const int64_t d_inner = n_head;
GGML_ASSERT(2 * d_model == d_inner);
const int64_t d_conv = n_embd_head_k;
const int64_t d_conv = n_embd_head_k + 1;
const int64_t d_state = n_embd_head_v;
const int64_t dt_rank = d_model / 16;

struct ggml_tensor * cur;
struct ggml_tensor * inpL;

// NOTE: not sure what's the difference between the sequence length and the batch size in the paper.
// {n_embd, batch}
// {n_embd, n_tok}
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
cb(inpL, "inp_embd", -1);

for (int il = 0; il < n_layer; ++il) {
// (ab)using the kv cache to store the state
ggml_tensor * conv_state = ggml_reshape_2d(ctx0, kv_self.k_l[il], d_conv, d_inner);
// NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
ggml_tensor * conv_state = ggml_reshape_2d(ctx0, kv_self.k_l[il], d_conv - 1, d_inner);
ggml_tensor * ssm_state = ggml_reshape_2d(ctx0, kv_self.v_l[il], d_state, d_inner);

// norm
Expand All @@ -6947,33 +6943,43 @@ struct llm_build_context {
LLM_NORM_RMS, cb, il);
cb(cur, "attn_norm", il);

// {n_embd, 2*d_inner} * {n_embd, batch} = {2*d_inner, batch}
// {n_embd, 2*d_inner} * {n_embd, n_tok} => {2*d_inner, n_tok}
struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
// split the above in two
// assuming it's contiguous
// {d_inner, batch}
// => {d_inner, n_tok}
struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);

cur = x;

// conv
{
// shift conv state left
conv_state = ggml_set_2d(ctx0, conv_state, ggml_view_2d(ctx0, conv_state, (d_conv - 1), d_inner, conv_state->nb[1], ggml_element_size(conv_state)*1), conv_state->nb[1], 0);

// update last column
// x here is {d_inner, 1} (a row), but should be {1, d_inner} (a column)
conv_state = ggml_set_2d(ctx0, conv_state, ggml_cont(ctx0, ggml_transpose(ctx0, x)), conv_state->nb[1], ggml_element_size(conv_state)*(d_conv - 1));

ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_state, ggml_view_tensor(ctx0, kv_self.k_l[il])));

// rearrange and sum
// no need to rearrange the conv_state, since it's already in the right shape
// => {1, d_inner}
x = ggml_sum_rows(ctx0, ggml_mul(ctx0, conv_state, model.layers[il].ssm_conv1d));
// => {d_inner, 1}
x = ggml_transpose(ctx0, x);
// concat last (d_conv - 1) columns of conv_state, and x

// The following tensor is too big in order to avoid an assertion error when making an overlapping view.
// TODO: in ggml_new_tensor_impl, handle overlapping data range in data size calculation
// This could then be a tensor with ne[] = {(d_conv-1)+n_tok, d_inner}
// which is around (d_conv-1) times as small as its current size.
struct ggml_tensor * conv_x = ggml_new_tensor_1d(ctx0, conv_state->type, d_conv*d_inner*n_tok);
const size_t conv_x_nb1 = (d_conv - 1 + n_tok) * ggml_element_size(conv_x);

conv_x = ggml_set_2d(ctx0, conv_x, conv_state, conv_x_nb1, 0);
// unfortunately, making x contiguous is necessary because ggml_set expects nb0 == sizeof(float)
conv_x = ggml_set_2d(ctx0, conv_x, ggml_cont(ctx0, ggml_transpose(ctx0, x)), conv_x_nb1, (d_conv - 1)*ggml_element_size(conv_x));

// store last (d_conv - 1) columns of conv_x back into the KV cache for the next conv_state
ggml_build_forward_expand(gf,
ggml_cpy(ctx0,
ggml_view_2d(ctx0, conv_x, d_conv - 1, d_inner, conv_x_nb1, n_tok*ggml_element_size(conv_x)),
ggml_view_tensor(ctx0, kv_self.k_l[il])));

// prepare convolution for all tokens in the batch with a self-overlapping view
// {(d_conv-1)+n_tok, d_inner} => {d_conv, d_inner, n_tok}
conv_x = ggml_view_3d(ctx0, conv_x, d_conv, d_inner, n_tok, conv_x_nb1, -(d_conv - 1)*d_inner*ggml_element_size(conv_x), 0);

// perform convolution
// => {1, d_inner, n_tok}
x = ggml_sum_rows(ctx0, ggml_mul(ctx0, conv_x, model.layers[il].ssm_conv1d));
// => {d_inner, n_tok, 1}
x = ggml_permute(ctx0, x, 2, 0, 1, 3);

// bias
x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
Expand All @@ -6983,23 +6989,24 @@ struct llm_build_context {

// ssm
{
// {2*n_embd, batch} * {2*n_embd, dt_rank + 2*d_state} = {batch, dt_rank + 2*d_state}
struct ggml_tensor * x_db = ggml_mul_mat(ctx0, x, model.layers[il].ssm_x);
// FIXME: handle batches of more than 1 token
struct ggml_tensor * dt = ggml_view_1d(ctx0, x_db, dt_rank, 0);
struct ggml_tensor * B = ggml_view_1d(ctx0, x_db, d_state, ggml_element_size(x_db)*dt_rank);
struct ggml_tensor * C = ggml_view_1d(ctx0, x_db, d_state, ggml_element_size(x_db)*(dt_rank+d_state));

// {dt_rank} * {dt_rank, d_inner} = {1, d_inner}
dt = ggml_mul_mat(ctx0, dt, model.layers[il].ssm_dt);
dt = ggml_add(ctx0, dt, ggml_transpose(ctx0, model.layers[il].ssm_dt_b));
// {d_inner, dt_rank + 2*d_state} * {d_inner, n_tok} => {dt_rank + 2*d_state, n_tok}
struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
// split
struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, x_db->ne[1], x_db->nb[1], 0);
struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, x_db->ne[1], x_db->nb[1], ggml_element_size(x_db)*dt_rank);
struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, x_db->ne[1], x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));

// {dt_rank, d_inner} * {dt_rank, n_tok} => {d_inner, n_tok}
dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
dt = ggml_soft_plus(ctx0, dt);

// FIXME: support batches with more than 1 token
// => {d_state, d_inner}
struct ggml_tensor * dA = ggml_exp(ctx0, ggml_mul(ctx0, model.layers[il].ssm_a, dt));
struct ggml_tensor * dA = ggml_exp(ctx0, ggml_mul(ctx0, model.layers[il].ssm_a, ggml_transpose(ctx0, dt)));

// => {d_state, d_inner}
struct ggml_tensor * dB = ggml_out_prod(ctx0, B, ggml_transpose(ctx0, dt));
struct ggml_tensor * dB = ggml_out_prod(ctx0, B, dt);

// => {d_state, d_inner}
cur = ggml_mul(ctx0, dB, ggml_transpose(ctx0, x));
Expand All @@ -7014,7 +7021,7 @@ struct llm_build_context {
y = ggml_add(ctx0, y, ggml_mul(ctx0, model.layers[il].ssm_d, x));
y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));

// {d_inner, n_embd} * {d_inner, 1} = {n_embd, 1}
// {d_inner, n_embd} * {d_inner, 1} => {n_embd, 1}
cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
}

Expand Down Expand Up @@ -10722,8 +10729,15 @@ struct llama_context * llama_new_context_with_model(
ctx->rng = std::mt19937(params.seed);
ctx->logits_all = params.logits_all;

const ggml_type type_k = params.type_k;
const ggml_type type_v = params.type_v;
ggml_type type_k = params.type_k;
ggml_type type_v = params.type_v;

// Mamba (mis)uses the KV cache to store its states
if (model->arch == LLM_ARCH_MAMBA) {
// it's probably best to keep as much precision as possible for the states
type_k = GGML_TYPE_F32; // required by ggml_set for Mamba's conv_state
type_v = GGML_TYPE_F32; // required by ggml_mul for Mamba's ssm_state
}

GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
Expand Down

0 comments on commit 7016fe5

Please sign in to comment.