-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
382 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
# This file is machine-generated - editing it directly is not advised | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,378 @@ | ||
""" | ||
█████╗ ██████╗██████╗ ██╗ | ||
██╔══██╗██╔════╝██╔══██╗██║ | ||
███████║██║ ██████╔╝██║ | ||
██╔══██║██║ ██╔══██╗██║ | ||
██║ ██║╚██████╗██║ ██║███████╗ | ||
╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═╝╚══════╝ | ||
File: PlanarQuadMPC.jl | ||
Author: Gabriel Barsi Haberfeld, 2020. [email protected] | ||
Function: This program implemetns an MPC controller for trajectory tracking of | ||
a planar quadrotor. | ||
Instructions: Run this file in juno with Julia 1.5.1 or later. | ||
Requirements: JuMP, Ipopt, Plots, LinearAlgebra, BenchmarkTools. | ||
""" | ||
|
||
using JuMP, Ipopt | ||
using Plots, LinearAlgebra | ||
using Polynomials | ||
using SparseArrays | ||
using ControlSystems | ||
|
||
function computeTraj() | ||
m_q = 4 #mass of a quadrotor | ||
I_q = diag([0.3 0.3 0.3]) #moment of inertia of a quadrotor | ||
g = 9.81 #gravitational acceleration | ||
|
||
#Trajectory | ||
global m | ||
n = 4 #number of flat outputs (x, y, z, psi) | ||
t_f = 10 #final time of the trajectory | ||
|
||
order = 6 #order of polynomial functions | ||
|
||
time_interval_selection_flag = true #true : fixed time interval, false : optimal time interval | ||
if (time_interval_selection_flag) | ||
t = collect(range(0, stop = t_f, length = m + 1)) | ||
end | ||
|
||
n_intermediate = 5 | ||
corridor_width = 0.05 | ||
corridor_position = [3 4] | ||
|
||
#keyframes, column = index, rows = xyz yaw | ||
keyframe = [ | ||
0 7.1 14.3 7.9 | ||
0 8.6 0.7 -5.3 | ||
0 1.0 1.3 0.9 | ||
0 0 0 0 | ||
] | ||
m = size(keyframe,2) | ||
c = zeros(4 * (order + 1) * m) | ||
mu_r = 1 | ||
mu_psi = 1 | ||
k_r = 4 | ||
k_psi = 2 | ||
A = computeCostMat(order, m, mu_r, mu_psi, k_r, k_psi, t) | ||
end | ||
|
||
function computeCostMat(order, m, mu_r, mu_psi, k_r, k_psi, t) | ||
polynomial_r = Polynomial(ones(order + 1)) | ||
for i = 1:k_r | ||
polynomial_r = derivative(polynomial_r) #Differentiation up to k | ||
end | ||
|
||
polynomial_psi = Polynomial(ones(order + 1)) | ||
for i = 1:k_psi | ||
polynomial_psi = derivative(polynomial_psi) #Differentiation up to k | ||
end | ||
|
||
A = [] | ||
for i = 1:m | ||
A_x = zeros(order + 1, order + 1) | ||
A_y = zeros(order + 1, order + 1) | ||
A_z = zeros(order + 1, order + 1) | ||
A_psi = zeros(order + 1, order + 1) | ||
for j = 1:order+1 | ||
for k = j:order+1 | ||
|
||
#Position | ||
if (j <= length(polynomial_r) && (k <= length(polynomial_r))) | ||
order_t_r = ((order - k_r - j + 1) + (order - k_r - k + 1)) | ||
if (j == k) | ||
A_x[j, k] = | ||
polynomial_r[j-1]^2 / (order_t_r + 1) * | ||
(t[i+1]^(order_t_r + 1) - t[i]^(order_t_r + 1)) | ||
A_y[j, k] = | ||
polynomial_r[j-1]^2 / (order_t_r + 1) * | ||
(t[i+1]^(order_t_r + 1) - t[i]^(order_t_r + 1)) | ||
A_z[j, k] = | ||
polynomial_r[j-1]^2 / (order_t_r + 1) * | ||
(t[i+1]^(order_t_r + 1) - t[i]^(order_t_r + 1)) | ||
else | ||
A_x[j, k] = | ||
2 * polynomial_r[j-1] * polynomial_r[k-1] / (order_t_r + 1) * | ||
(t[i+1]^(order_t_r + 1) - t[i]^(order_t_r + 1)) | ||
A_y[j, k] = | ||
2 * polynomial_r[j-1] * polynomial_r[k-1] / (order_t_r + 1) * | ||
(t[i+1]^(order_t_r + 1) - t[i]^(order_t_r + 1)) | ||
A_z[j, k] = | ||
2 * polynomial_r[j-1] * polynomial_r[k-1] / (order_t_r + 1) * | ||
(t[i+1]^(order_t_r + 1) - t[i]^(order_t_r + 1)) | ||
end | ||
end | ||
|
||
#Yaw | ||
if (j <= length(polynomial_psi) && (k <= length(polynomial_psi))) | ||
order_t_psi = ((order - k_psi - j + 1) + (order - k_psi - k + 1)) | ||
if (j == k) | ||
A_psi[j, k] = | ||
polynomial_psi[j-1]^2 / (order_t_psi + 1) * | ||
(t[i+1]^(order_t_psi + 1) - t[i]^(order_t_psi + 1)) | ||
else | ||
A_psi[j, k] = | ||
2 * polynomial_psi[j-1] * polynomial_psi[k-1] / | ||
(order_t_psi + 1) * | ||
(t[i+1]^(order_t_psi + 1) - t[i]^(order_t_psi + 1)) | ||
end | ||
end | ||
|
||
end | ||
end | ||
if i == 1 | ||
blocks = [mu_r * A_x, mu_r * A_y, mu_r * A_z, mu_psi * A_psi] | ||
else | ||
blocks = [A, mu_r * A_x, mu_r * A_y, mu_r * A_z, mu_psi * A_psi] | ||
end | ||
A = ControlSystems.blockdiag(blocks...) | ||
end | ||
A = 0.5 * (A + A') #Make it symmetric | ||
end | ||
|
||
|
||
function computeConstraint(order, m, k_r, k_psi, t, keyframe, corridor_position, n_intermediate, corridor_width) | ||
|
||
n = 4; #State number | ||
|
||
#Waypoint constraints | ||
C1 = zeros(2*m*n,n*(order+1)*m); | ||
b1 = zeros(2*m*n); | ||
computeMat = diagm(ones(order+1)); #Required for computation of polynomials | ||
for i=1:m | ||
waypoint = keyframe[:,i]; #Waypoint at t(i) | ||
|
||
if(i==1) #Initial and Final Position | ||
#Initial | ||
values = zeros(1,order+1); | ||
for j=1:order+1 | ||
poly = Polynomial(computeMat[j,:]) | ||
values[j] = poly(t[i]) | ||
end | ||
|
||
for k=1:n | ||
c = zeros(1,n*(order+1)*m); | ||
c[ ((i-1)*(order+1)*n+(k-1)*(order+1)+1) : ((i-1)*(order+1)*n+(k-1)*(order+1))+order+1 ] = values; | ||
C1[k,:] = c; | ||
end | ||
b1[1:n] = waypoint; | ||
|
||
#Final | ||
for j=1:order+1 | ||
values(j) = polyval(computeMat(j,:),t(m+1)); | ||
end | ||
|
||
for k=1:n | ||
c = zeros(1,n*(order+1)*m); | ||
c( ((m-1)*(order+1)*n+(k-1)*(order+1)+1) : ((m-1)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C1(k+n,:) = c; | ||
end | ||
b1(n+1:2*n) = waypoint; | ||
|
||
else | ||
#Elsewhere | ||
values = zeros(1,order+1); | ||
for j=1:order+1 | ||
values(j) = polyval(computeMat(j,:),t(i)); | ||
end | ||
|
||
for k=1:n | ||
c = zeros(1,n*(order+1)*m); | ||
c( ((i-2)*(order+1)*n+(k-1)*(order+1)+1) : ((i-2)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C1(k+2*n*(i-1),:) = c; | ||
end | ||
b1(2*n*(i-1)+1:2*n*(i-1)+n) = waypoint; | ||
|
||
for k=1:n | ||
c = zeros(1,n*(order+1)*m); | ||
c( ((i-1)*(order+1)*n+(k-1)*(order+1)+1) : ((i-1)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C1(k+2*n*(i-1)+n,:) = c; | ||
end | ||
b1(2*n*(i-1)+n+1:2*n*(i-1)+2*n) = waypoint; | ||
|
||
end | ||
|
||
end | ||
|
||
|
||
# Derivative constraints | ||
|
||
# Position | ||
C2 = zeros(2*m*(n-1)*k_r,n*(order+1)*m); #(n-1) : yaw excluded here | ||
b2 = ones(2*m*(n-1)*k_r,1)*eps; | ||
constraintData; | ||
#constraintData_r = zeros(m,k_r,3); | ||
for i=1:m | ||
for h=1:k_r | ||
if(i==1) | ||
#Initial | ||
values = zeros(1,order+1); | ||
for j=1:order+1 | ||
tempCoeffs = computeMat(j,:); | ||
for k=1:h | ||
tempCoeffs = polyder(tempCoeffs); | ||
end | ||
values(j) = polyval(tempCoeffs,t(i)); | ||
end | ||
|
||
continuity = zeros(1,n-1); | ||
for k=1:n-1 | ||
if(constraintData_r(i,h,k)==eps) | ||
%Continuity | ||
continuity(k) = true; | ||
end | ||
|
||
c = zeros(1,n*(order+1)*m); | ||
if(continuity(k)) | ||
c( ((i-1)*(order+1)*n+(k-1)*(order+1)+1) : ((i-1)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
c( ((m-1)*(order+1)*n+(k-1)*(order+1)+1) : ((m-1)*(order+1)*n+(k-1)*(order+1))+order+1) = -values; | ||
C2(k + (h-1)*(n-1),:) = c; | ||
b2(k + (h-1)*(n-1)) = 0; | ||
else | ||
c( ((i-1)*(order+1)*n+(k-1)*(order+1)+1) : ((i-1)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C2(k + (h-1)*(n-1),:) = c; | ||
b2(k + (h-1)*(n-1)) = constraintData_r(i,h,k); | ||
end | ||
end | ||
|
||
#Final | ||
values = zeros(1,order+1); | ||
for j=1:order+1 | ||
tempCoeffs = computeMat(j,:); | ||
for k=1:h | ||
tempCoeffs = polyder(tempCoeffs); | ||
end | ||
values(j) = polyval(tempCoeffs,t(m+1)); | ||
end | ||
|
||
for k=1:n-1 | ||
if(constraintData_r(i,h,k)==eps) | ||
#Continuity | ||
end | ||
c = zeros(1,n*(order+1)*m); | ||
if(~continuity(k)) | ||
c( ((m-1)*(order+1)*n+(k-1)*(order+1)+1) : ((m-1)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C2(k + (h-1)*(n-1) + (n-1)*k_r,:) = c; | ||
b2(k + (h-1)*(n-1) + (n-1)*k_r) = constraintData_r(i,h,k); | ||
end | ||
end | ||
|
||
else | ||
|
||
#Elsewhere | ||
values = zeros(1,order+1); | ||
for j=1:order+1 | ||
tempCoeffs = computeMat(j,:); | ||
for k=1:h | ||
tempCoeffs = polyder(tempCoeffs); | ||
end | ||
values(j) = polyval(tempCoeffs,t(i)); | ||
end | ||
|
||
continuity = zeros(1,n-1); | ||
for k=1:n-1 | ||
if(constraintData_r(i,h,k)==eps) | ||
#Continuity | ||
continuity(k) = true; | ||
end | ||
|
||
c = zeros(1,n*(order+1)*m); | ||
if(continuity(k)) | ||
c( ((i-2)*(order+1)*n+(k-1)*(order+1)+1) : ((i-2)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
c( ((i-1)*(order+1)*n+(k-1)*(order+1)+1) : ((i-1)*(order+1)*n+(k-1)*(order+1))+order+1) = -values; | ||
C2(k + (h-1)*(n-1) + 2*(i-1)*(n-1)*k_r,:) = c; | ||
b2(k + (h-1)*(n-1) + 2*(i-1)*(n-1)*k_r) = 0; | ||
else | ||
c( ((i-2)*(order+1)*n+(k-1)*(order+1)+1) : ((i-2)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C2(k + (h-1)*(n-1) + 2*(i-1)*(n-1)*k_r,:) = c; | ||
b2(k + (h-1)*(n-1) + 2*(i-1)*(n-1)*k_r) = constraintData_r(i,h,k); | ||
end | ||
end | ||
|
||
continuity = zeros(1,n-1); | ||
for k=1:n-1 | ||
if(constraintData_r(i,h,k)==eps) | ||
#Continuity | ||
continuity(k) = true; | ||
end | ||
c = zeros(1,n*(order+1)*m); | ||
|
||
if(~continuity(k)) | ||
c( ((i-1)*(order+1)*n+(k-1)*(order+1)+1) : ((i-1)*(order+1)*n+(k-1)*(order+1))+order+1) = values; | ||
C2(k + (h-1)*(n-1) + 2*(i-1)*(n-1)*k_r + (n-1)*k_r,:) = c; | ||
b2(k + (h-1)*(n-1) + 2*(i-1)*(n-1)*k_r + (n-1)*k_r) = constraintData_r(i,h,k); | ||
end | ||
|
||
end | ||
|
||
end | ||
end | ||
end | ||
|
||
#Corridor constraints | ||
|
||
C3 = []; | ||
|
||
b3 = []; | ||
t_vector = (keyframe(1:3,corridor_position(2)) - keyframe(1:3,corridor_position(1)))... | ||
/norm(keyframe(1:3,corridor_position(2)) - keyframe(1:3,corridor_position(1))); | ||
#unit vector of direction of the corridor | ||
|
||
t_intermediate = linspace(t(corridor_position(1)),t(corridor_position(2)),n_intermediate+2); | ||
t_intermediate = t_intermediate(2:end-1); | ||
#intermediate time stamps | ||
|
||
computeMat = eye(order+1); #Required for computation of polynomials | ||
for i = 1:n_intermediate | ||
values = zeros(1,order+1); | ||
for j=1:order+1 | ||
values(j) = polyval(computeMat(j,:),t_intermediate(i)); | ||
end | ||
|
||
c = zeros(6, n*(order+1)*m); #Absolute value constraint : two inequality constraints | ||
b = zeros(6, 1); | ||
|
||
rix = keyframe(1,corridor_position(1)); | ||
riy = keyframe(2,corridor_position(1)); | ||
riz = keyframe(3,corridor_position(1)); | ||
#x | ||
c(1,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1))... | ||
= [values zeros(1,2*(order+1))]... | ||
- t_vector(1)*[t_vector(1)*values t_vector(2)*values t_vector(3)*values]; | ||
b(1) = corridor_width +... | ||
rix+t_vector(1)*(-rix*t_vector(1) -riy*t_vector(2) -riz*t_vector(3)); | ||
c(2,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1))... | ||
= -c(1,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1)); | ||
b(2) = corridor_width +... | ||
-rix-t_vector(1)*(-rix*t_vector(1) -riy*t_vector(2) -riz*t_vector(3)); | ||
#y | ||
c(3,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1))... | ||
= [zeros(1,order+1) values zeros(1,order+1)]... | ||
- t_vector(2)*[t_vector(1)*values t_vector(2)*values t_vector(3)*values]; | ||
b(3) = corridor_width +... | ||
riy+t_vector(2)*(-rix*t_vector(1) -riy*t_vector(2) -riz*t_vector(3)); | ||
c(4,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1))... | ||
= -c(3,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1)); | ||
b(4) = corridor_width +... | ||
-riy-t_vector(2)*(-rix*t_vector(1) -riy*t_vector(2) -riz*t_vector(3)); | ||
#z | ||
c(5,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1))... | ||
= [zeros(1,2*(order+1)) values]... | ||
- t_vector(3)*[t_vector(1)*values t_vector(2)*values t_vector(3)*values]; | ||
b(5) = corridor_width +... | ||
riz+t_vector(3)*(-rix*t_vector(1) -riy*t_vector(2) -riz*t_vector(3)); | ||
c(6,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1))... | ||
= -c(5,(corridor_position(1)-1)*n*(order+1)+0*(order+1)+1:(corridor_position(1)-1)*n*(order+1)+3*(order+1)); | ||
b(6) = corridor_width +... | ||
-riz-t_vector(3)*(-rix*t_vector(1) -riy*t_vector(2) -riz*t_vector(3)); | ||
|
||
C3 = [C3; c]; | ||
b3 = [b3; b]; | ||
end | ||
|
||
C = [C1; C2]; | ||
b = [b1; b2]; | ||
end |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters