Skip to content

fuyw/TemporalOT

Repository files navigation

TemporalOT

Environment Setup

We use Python3.9 and Cuda12.

conda create --name TemporalOT python==3.9
conda activate TemporalOT
conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia
pip install -r requirements.txt

Run Experiments

We need to first generate the expert demo data using collect_expert_traj.py.

We can then run the TemporalOT agent using python main.py.

Cite

Please cite our work if you find it useful:

@InProceedings{fu2024robot,
  title={Robot Policy Learning with Temporal Optimal Transport Reward},
  author = {Yuwei Fu and Haichao Zhang and Di Wu and Wei Xu and Benoit Boulet},
  booktitle={The Thirty-eighth Annual Conference on Neural Information Processing Systems},
  year = {2024}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published