-
Notifications
You must be signed in to change notification settings - Fork 39
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Replace itertools dependency with copied module
Copied multi_product module from itertools 0.11.0 under MIT license. Eliminates dependency on building all of itertools.
- Loading branch information
1 parent
bc100d1
commit 99f0c11
Showing
3 changed files
with
278 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
271 changes: 271 additions & 0 deletions
271
crates/test-case-core/src/test_matrix/matrix_product.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,271 @@ | ||
//! Copied with minor modifications from itertools v0.11.0 | ||
//! under MIT License | ||
//! | ||
//! Source file and commit hash: | ||
//! https://github.com/rust-itertools/itertools/blob/v0.11.0/src/adaptors/multi_product.rs | ||
//! ed6fbda086a913a787450a642acfd4d36dc07c3b | ||
#[derive(Clone)] | ||
/// An iterator adaptor that iterates over the cartesian product of | ||
/// multiple iterators of type `I`. | ||
/// | ||
/// An iterator element type is `Vec<I>`. | ||
/// | ||
/// See [`.multi_cartesian_product()`](crate::Itertools::multi_cartesian_product) | ||
/// for more information. | ||
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"] | ||
pub struct MultiProduct<I>(Vec<MultiProductIter<I>>) | ||
where | ||
I: Iterator + Clone, | ||
I::Item: Clone; | ||
|
||
/// Create a new cartesian product iterator over an arbitrary number | ||
/// of iterators of the same type. | ||
/// | ||
/// Iterator element is of type `Vec<H::Item::Item>`. | ||
pub fn multi_cartesian_product<H>(iters: H) -> MultiProduct<<H::Item as IntoIterator>::IntoIter> | ||
where | ||
H: Iterator, | ||
H::Item: IntoIterator, | ||
<H::Item as IntoIterator>::IntoIter: Clone, | ||
<H::Item as IntoIterator>::Item: Clone, | ||
{ | ||
MultiProduct( | ||
iters | ||
.map(|i| MultiProductIter::new(i.into_iter())) | ||
.collect(), | ||
) | ||
} | ||
|
||
#[derive(Clone, Debug)] | ||
/// Holds the state of a single iterator within a `MultiProduct`. | ||
struct MultiProductIter<I> | ||
where | ||
I: Iterator + Clone, | ||
I::Item: Clone, | ||
{ | ||
cur: Option<I::Item>, | ||
iter: I, | ||
iter_orig: I, | ||
} | ||
|
||
/// Holds the current state during an iteration of a `MultiProduct`. | ||
#[derive(Debug)] | ||
enum MultiProductIterState { | ||
StartOfIter, | ||
MidIter { on_first_iter: bool }, | ||
} | ||
|
||
impl<I> MultiProduct<I> | ||
where | ||
I: Iterator + Clone, | ||
I::Item: Clone, | ||
{ | ||
/// Iterates the rightmost iterator, then recursively iterates iterators | ||
/// to the left if necessary. | ||
/// | ||
/// Returns true if the iteration succeeded, else false. | ||
fn iterate_last( | ||
multi_iters: &mut [MultiProductIter<I>], | ||
mut state: MultiProductIterState, | ||
) -> bool { | ||
use self::MultiProductIterState::*; | ||
|
||
if let Some((last, rest)) = multi_iters.split_last_mut() { | ||
let on_first_iter = match state { | ||
StartOfIter => { | ||
let on_first_iter = !last.in_progress(); | ||
state = MidIter { on_first_iter }; | ||
on_first_iter | ||
} | ||
MidIter { on_first_iter } => on_first_iter, | ||
}; | ||
|
||
if !on_first_iter { | ||
last.iterate(); | ||
} | ||
|
||
if last.in_progress() { | ||
true | ||
} else if MultiProduct::iterate_last(rest, state) { | ||
last.reset(); | ||
last.iterate(); | ||
// If iterator is None twice consecutively, then iterator is | ||
// empty; whole product is empty. | ||
last.in_progress() | ||
} else { | ||
false | ||
} | ||
} else { | ||
// Reached end of iterator list. On initialisation, return true. | ||
// At end of iteration (final iterator finishes), finish. | ||
match state { | ||
StartOfIter => false, | ||
MidIter { on_first_iter } => on_first_iter, | ||
} | ||
} | ||
} | ||
|
||
/// Returns the unwrapped value of the next iteration. | ||
fn curr_iterator(&self) -> Vec<I::Item> { | ||
self.0 | ||
.iter() | ||
.map(|multi_iter| multi_iter.cur.clone().unwrap()) | ||
.collect() | ||
} | ||
|
||
/// Returns true if iteration has started and has not yet finished; false | ||
/// otherwise. | ||
fn in_progress(&self) -> bool { | ||
if let Some(last) = self.0.last() { | ||
last.in_progress() | ||
} else { | ||
false | ||
} | ||
} | ||
} | ||
|
||
impl<I> MultiProductIter<I> | ||
where | ||
I: Iterator + Clone, | ||
I::Item: Clone, | ||
{ | ||
fn new(iter: I) -> Self { | ||
MultiProductIter { | ||
cur: None, | ||
iter: iter.clone(), | ||
iter_orig: iter, | ||
} | ||
} | ||
|
||
/// Iterate the managed iterator. | ||
fn iterate(&mut self) { | ||
self.cur = self.iter.next(); | ||
} | ||
|
||
/// Reset the managed iterator. | ||
fn reset(&mut self) { | ||
self.iter = self.iter_orig.clone(); | ||
} | ||
|
||
/// Returns true if the current iterator has been started and has not yet | ||
/// finished; false otherwise. | ||
fn in_progress(&self) -> bool { | ||
self.cur.is_some() | ||
} | ||
} | ||
|
||
impl<I> Iterator for MultiProduct<I> | ||
where | ||
I: Iterator + Clone, | ||
I::Item: Clone, | ||
{ | ||
type Item = Vec<I::Item>; | ||
|
||
fn next(&mut self) -> Option<Self::Item> { | ||
if MultiProduct::iterate_last(&mut self.0, MultiProductIterState::StartOfIter) { | ||
Some(self.curr_iterator()) | ||
} else { | ||
None | ||
} | ||
} | ||
|
||
fn count(self) -> usize { | ||
if self.0.is_empty() { | ||
return 0; | ||
} | ||
|
||
if !self.in_progress() { | ||
return self | ||
.0 | ||
.into_iter() | ||
.fold(1, |acc, multi_iter| acc * multi_iter.iter.count()); | ||
} | ||
|
||
self.0.into_iter().fold( | ||
0, | ||
|acc, | ||
MultiProductIter { | ||
iter, | ||
iter_orig, | ||
cur: _, | ||
}| { | ||
let total_count = iter_orig.count(); | ||
let cur_count = iter.count(); | ||
acc * total_count + cur_count | ||
}, | ||
) | ||
} | ||
|
||
fn size_hint(&self) -> (usize, Option<usize>) { | ||
// Not ExactSizeIterator because size may be larger than usize | ||
if self.0.is_empty() { | ||
return (0, Some(0)); | ||
} | ||
|
||
if !self.in_progress() { | ||
return self.0.iter().fold((1, Some(1)), |acc, multi_iter| { | ||
size_hint::mul(acc, multi_iter.iter.size_hint()) | ||
}); | ||
} | ||
|
||
self.0.iter().fold( | ||
(0, Some(0)), | ||
|acc, | ||
MultiProductIter { | ||
iter, | ||
iter_orig, | ||
cur: _, | ||
}| { | ||
let cur_size = iter.size_hint(); | ||
let total_size = iter_orig.size_hint(); | ||
size_hint::add(size_hint::mul(acc, total_size), cur_size) | ||
}, | ||
) | ||
} | ||
|
||
fn last(self) -> Option<Self::Item> { | ||
let iter_count = self.0.len(); | ||
|
||
let lasts: Self::Item = self | ||
.0 | ||
.into_iter() | ||
.filter_map(|multi_iter| multi_iter.iter.last()) | ||
.collect(); | ||
|
||
if lasts.len() == iter_count { | ||
Some(lasts) | ||
} else { | ||
None | ||
} | ||
} | ||
} | ||
|
||
mod size_hint { | ||
/// `SizeHint` is the return type of `Iterator::size_hint()`. | ||
pub type SizeHint = (usize, Option<usize>); | ||
|
||
/// Add `SizeHint` correctly. | ||
#[inline] | ||
pub fn add(a: SizeHint, b: SizeHint) -> SizeHint { | ||
let min = a.0.saturating_add(b.0); | ||
let max = match (a.1, b.1) { | ||
(Some(x), Some(y)) => x.checked_add(y), | ||
_ => None, | ||
}; | ||
|
||
(min, max) | ||
} | ||
|
||
/// Multiply `SizeHint` correctly | ||
#[inline] | ||
pub fn mul(a: SizeHint, b: SizeHint) -> SizeHint { | ||
let low = a.0.saturating_mul(b.0); | ||
let hi = match (a.1, b.1) { | ||
(Some(x), Some(y)) => x.checked_mul(y), | ||
(Some(0), None) | (None, Some(0)) => Some(0), | ||
_ => None, | ||
}; | ||
(low, hi) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters