Skip to content

Commit

Permalink
blueprint: fixed small typos
Browse files Browse the repository at this point in the history
  • Loading branch information
cmthiele committed Jun 29, 2024
1 parent a981112 commit 04dc610
Showing 1 changed file with 17 additions and 21 deletions.
38 changes: 17 additions & 21 deletions blueprint/src/chapter/main.tex
Original file line number Diff line number Diff line change
Expand Up @@ -969,12 +969,7 @@ \chapter{Proof of Metric Space Carleson}
\left| {T}_{2,\sigma_1,\sigma_2, \tQ}f(x) \right|\, d\mu(x)
\le \frac{2^{445a^3}}{(q-1)^6} \mu(G)^{1-\frac{1}{q}} \mu(F)^{\frac{1}{q}}.
\end{equation}
As the integrand is bounded by
\begin{equation}\mathbf{1}_{G\setminus G_{n}}(x)
\sum_{-S<s_1\le s_2<S}\sum_{\mfa\in\tilde{\Mf}}
\left| {T}_{1,s_1, s_2, \mfa} f(x) \right|,
\end{equation}
which by interchange of summation and integration is seen to be integrable, we obtain by Lebesgue's dominated convergence theorem
As the integrand is non-negative and non-decreasing in $n$, we obtain by the monotone convergence theorem
\begin{equation} \label{Sqcut3}
\int \mathbf{1}_{G}(x)
\left| {T}_{2,\sigma_1,\sigma_2, \tQ}f(x) \right|\, d\mu(x)
Expand Down Expand Up @@ -4522,7 +4517,7 @@ \section{The quantitative \texorpdfstring{$L^2$}{L2} tree estimate}
\label{local-dens2-tree-bound}
Let $J \in \mathcal{J}(\fT(\fu))$ be such that there exist $\fq \in \fT(\fu)$ with $J \cap \scI(\fq) \ne \emptyset$. Then
$$
\mu(F \cap J) \le 2^{200a^3 + 19} \dens_2(\fT(\fu))\,.
\mu(F \cap J) \le 2^{200a^3 + 19} \dens_2(\fT(\fu)) \mu(J)\,.
$$
\end{lemma}

Expand Down Expand Up @@ -4579,7 +4574,7 @@ \section{The quantitative \texorpdfstring{$L^2$}{L2} tree estimate}
$$
\le 2^{100a^3 + 10} \dens_2(\fT(\fu))^{1/2} \|f\|_2\,.
$$
Combining this with \eqref{eq-both-factors-tree}, \eqref{eq-factor-L-tree} and $a \ge 4$ gives \eqref{eq-cor-tree-est-F}.
Combining this with \eqref{eq-both-factors-tree}, \eqref{eq-cor-tree-proof} and $a \ge 4$ gives \eqref{eq-cor-tree-est-F}.
\end{proof}

Now we prove the two auxiliary estimates.
Expand Down Expand Up @@ -4780,7 +4775,9 @@ \section{Almost orthogonality of separated trees}
\mathfrak{S} := \{\fp \in \fT(\fu_1) \cup \fT(\fu_2) \ : \ d_{\fp}(\fcc(\fu_1), \fcc(\fu_2)) \ge 2^{Zn/2}\,\}.
\end{equation}
\Cref{correlation-separated-trees} follows by combining the definition \eqref{defineZ} of $Z$ with the following two lemmas.
\begin{lemma}[correlation distant tree parts]
\end{proof}

\begin{lemma}[correlation distant tree parts]
\label{correlation-distant-tree-parts}
\uses{Holder-van-der-Corput,Lipschitz-partition-unity,Holder-correlation-tree,lower-oscillation-bound}
We have for all $\fu_1 \ne \fu_2 \in \fU$ with $\scI(\fu_1) \subset \scI(\fu_2)$ and all bounded $g_1, g_2$ with bounded support
Expand All @@ -4806,7 +4803,6 @@ \section{Almost orthogonality of separated trees}
\le 2^{222a^3} 2^{-Zn 2^{-10a}} \prod_{j =1}^2 \| S_{2, \fu_j} g_j\|_{L^2(\scI(\fu_1)}\,.
\end{equation}
\end{lemma}
\end{proof}

In the proofs of both lemmas, we will need the following observation.

Expand Down Expand Up @@ -5129,7 +5125,7 @@ \subsection{H\"older estimates for adjoint tree operators}
$$
Then
$$
s(J) \le \ps(\fp) \le s(J) + 10a^2 + 2\,.
s(J) \le \ps(\fp) \le s(J) +3\,.
$$
\end{lemma}

Expand All @@ -5145,24 +5141,24 @@ \subsection{H\"older estimates for adjoint tree operators}
$$
by our assumption. Thus $D^{\ps(\fp)} \ge 64 D^{s(J)}$, which contradicts \eqref{defineD} and $a \ge 4$.

For the second estimate, assume that $\ps(\fp) > s(J) +10a^2 + 2$. Since $J \in \mathcal{J}'$, we have $J \subsetneq \scI(\fu_1)$. Thus there exists $J' \in \mathcal{D}$ with $J \subset J'$ and $s(J') = s(J) + 1$, by \eqref{coverdyadic} and \eqref{dyadicproperty}. By definition of $\mathcal{J}'$, there exists some $\fp' \in \mathfrak{S}$ such that $\scI(\fp') \subset B(c(J'), 100 D^{s(J) + 2})$. On the other hand, since $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$, by the triangle inequality it holds that
For the second estimate, assume that $\ps(\fp) > s(J) + 3$. Since $J \in \mathcal{J}'$, we have $J \subsetneq \scI(\fu_1)$. Thus there exists $J' \in \mathcal{D}$ with $J \subset J'$ and $s(J') = s(J) + 1$, by \eqref{coverdyadic} and \eqref{dyadicproperty}. By definition of $\mathcal{J}'$, there exists some $\fp' \in \mathfrak{S}$ such that $\scI(\fp') \subset B(c(J'), 100 D^{s(J) + 2})$. On the other hand, since $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$, by the triangle inequality it holds that
$$
B(c(J'), 100 D^{s(J) + 10a^2 + 2}) \subset B(\pc(\fp), 10 D^{\ps(\fp)})\,.
B(c(J'), 100 D^{s(J) + 3}) \subset B(\pc(\fp), 10 D^{\ps(\fp)})\,.
$$
Using the definition of $\mathfrak{S}$, we have
$$
2^{Zn/2} \le d_{\fp'}(\fcc(\fu_1), \fcc(\fu_2)) \le d_{B(c(J'), 100 D^{s(J) + 2})}(\fcc(\fu_1), \fcc(\fu_2))\,.
$$
By \eqref{seconddb}, this is
$$
\le 2^{-10a} d_{B(c(J'), 100 D^{s(J) + 10a^2 + 2})}(\fcc(\fu_1), \fcc(\fu_2))
\le 2^{-100a} d_{B(c(J'), 100 D^{s(J) + 3})}(\fcc(\fu_1), \fcc(\fu_2))
$$
$$
\le 2^{-10a} d_{B(\pc(\fp), 10 D^{\ps(\fp)})}(\fcc(\fu_1), \fcc(\fu_2))\,,
\le 2^{-100a} d_{B(\pc(\fp), 10 D^{\ps(\fp)})}(\fcc(\fu_1), \fcc(\fu_2))\,,
$$
and by \eqref{firstdb} and the definition of $\mathfrak{S}$
$$
\le 2^{-4a} d_{\fp}(\fcc(\fu_1), \fcc(\fu_2)) \le 2^{-4a} 2^{Zn/2}\,.
\le 2^{-94a} d_{\fp}(\fcc(\fu_1), \fcc(\fu_2)) \le 2^{-94a} 2^{Zn/2}\,.
$$
This is a contradiction, the second estimate follows.
\end{proof}
Expand All @@ -5186,7 +5182,7 @@ \subsection{H\"older estimates for adjoint tree operators}
By \Cref{limited-scale-impact}, this is at most
\begin{equation}
\label{eq-sep-tree-aux-3}
\sum_{s = s(J)}^{s(J) + 10a^2 + 2} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\ B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \sup_{B^\circ{}(J)} |T_{\fp}^* g|\,.
\sum_{s = s(J)}^{s(J) + 3} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\ B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \sup_{B^\circ{}(J)} |T_{\fp}^* g|\,.
\end{equation}
If $x \in E(\fp)$ and $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$, then
$$
Expand All @@ -5198,16 +5194,16 @@ \subsection{H\"older estimates for adjoint tree operators}
$$
Using \eqref{definetp*}, \eqref{eq-Ks-size} and that $a \ge 4$, we bound \eqref{eq-sep-tree-aux-3} by
$$
2^{103a^3}\sum_{s = s(J)}^{s(J) + 10a^2 + 2} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \frac{1}{\mu(B(c(J), 16 D^s)} \int_{E(\fp)} |g| \, \mathrm{d}\mu\,.
2^{103a^3}\sum_{s = s(J)}^{s(J) + 3} \sum_{\substack{\fp \in \fP, \ps(\fp) = s\\B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset}} \frac{1}{\mu(B(c(J), 16 D^s)} \int_{E(\fp)} |g| \, \mathrm{d}\mu\,.
$$
For each $I \in \mathcal{D}$, the sets $E(\fp)$ for $\fp \in \fP$ with $\scI(\fp) = I$ are pairwise disjoint by \eqref{defineep} and \eqref{eq-dis-freq-cover}. Further, if $B(\scI(\fp)) \cap B^\circ(J) \ne \emptyset$ and $\ps(\fp) \ge s(J)$, then $E(\fp) \subset B(c(J), 32 D^{\ps(\fp)})$. Thus the last display is bounded by
$$
2^{103a^3}\sum_{s = s(J)}^{s(J) + 10a^2 + 2} \frac{1}{\mu(B(c(J), 32 D^s))} \int_{B(c(J), 16 D^s)} |g| \, \mathrm{d}\mu\,.
2^{103a^3}\sum_{s = s(J)}^{s(J) + 3} \frac{1}{\mu(B(c(J), 32 D^s))} \int_{B(c(J), 16 D^s)} |g| \, \mathrm{d}\mu\,.
$$
$$
\le \inf_{x' \in J} 2^{103a^3}(10a^2 + 3) M_{\mathcal{B}, 1} |g|\,.
\le \inf_{x' \in J} 2^{103a^3 +2} M_{\mathcal{B}, 1} |g|\,.
$$
The lemma follows since for $a \ge 4$ it holds that $10a^2 + 3 \le 2^{a^3}$.
The lemma follows since $a \ge 4$.
\end{proof}

\begin{lemma}[scales impacting interval]
Expand Down

0 comments on commit 04dc610

Please sign in to comment.