-
Notifications
You must be signed in to change notification settings - Fork 11
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Francois Petitjean
committed
Jun 6, 2016
1 parent
5bb46f1
commit 0757de3
Showing
1 changed file
with
190 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,190 @@ | ||
/******************************************************************************* | ||
* Copyright (C) 2016 Francois Petitjean | ||
* | ||
* This file is part of Chordalysis. | ||
* | ||
* Chordalysis is free software: you can redistribute it and/or modify | ||
* it under the terms of the GNU General Public License as published by | ||
* the Free Software Foundation, version 3 of the License. | ||
* | ||
* Chordalysis is distributed in the hope that it will be useful, | ||
* but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
* GNU General Public License for more details. | ||
* | ||
* You should have received a copy of the GNU General Public License | ||
* along with Chordalysis. If not, see <http://www.gnu.org/licenses/>. | ||
******************************************************************************/ | ||
package explorer; | ||
|
||
import java.io.IOException; | ||
import java.util.ArrayList; | ||
|
||
import lattice.Lattice; | ||
import model.DecomposableModel; | ||
import model.GraphAction; | ||
import model.ScoredGraphAction; | ||
import stats.EntropyComputer; | ||
import stats.MyPriorityQueue; | ||
import stats.scorer.GraphActionScorer; | ||
import stats.scorer.GraphActionScorerPValue; | ||
import weka.core.Instances; | ||
import weka.core.converters.ArffLoader.ArffReader; | ||
|
||
/** | ||
* This class searches a statistically significant decomposable model to explain a dataset using Prioritized Chordalysis. | ||
* It uses Stepwise Multiple Testing, accepted for publication at KDD 2016. | ||
* See paper "A multiple test correction for streams and cascades of statistical hypothesis tests," KDD 2016 | ||
* See paper "Scaling log-linear analysis to high-dimensional data," ICDM 2013 | ||
* See paper "Scaling log-linear analysis to datasets with thousands of variables," SDM 2015 | ||
* @see http://www.francois-petitjean.com/Research/ | ||
*/ | ||
public class ChordalysisModellingSMT{ | ||
|
||
int nbInstances; | ||
double pValueThreshold; | ||
DecomposableModel bestModel; | ||
EntropyComputer entropyComputer; | ||
protected Lattice lattice; | ||
Instances dataset; | ||
ArrayList<GraphAction> operationsPerformed; | ||
MyPriorityQueue pq; | ||
GraphActionScorer scorer; | ||
|
||
boolean hasMissingValues = true; | ||
public void setHasMissingValues(boolean hasMissingValues){ | ||
this.hasMissingValues = hasMissingValues; | ||
} | ||
|
||
int maxNSteps = Integer.MAX_VALUE; | ||
public void setMaxNSteps(int nSteps){ | ||
this.maxNSteps = nSteps; | ||
System.out.println(maxNSteps); | ||
} | ||
|
||
/** | ||
* Default constructor | ||
* | ||
* @param pValueThreshold | ||
* minimum p-value for statistical consistency (commonly 0.05) | ||
*/ | ||
public ChordalysisModellingSMT(double pValueThreshold) { | ||
this.pValueThreshold = pValueThreshold; | ||
operationsPerformed = new ArrayList<GraphAction>(); | ||
} | ||
|
||
/** | ||
* Launch the modelling | ||
* | ||
* @param dataset | ||
* the dataset from which the analysis is performed on | ||
*/ | ||
public void buildModel(Instances dataset) { | ||
buildModelNoExplore(dataset); | ||
this.explore(); | ||
} | ||
|
||
public int getNbInstances() { | ||
return nbInstances; | ||
} | ||
|
||
public void buildModelNoExplore(Instances dataset) { | ||
this.nbInstances = dataset.numInstances(); | ||
this.dataset = dataset; | ||
int[] variables = new int[dataset.numAttributes()]; | ||
int[] nbValuesForAttribute = new int[variables.length]; | ||
for (int i = 0; i < variables.length; i++) { | ||
variables[i] = i; | ||
if(hasMissingValues){ | ||
nbValuesForAttribute[i] = dataset.attribute(i).numValues()+1; | ||
}else{ | ||
nbValuesForAttribute[i] = dataset.attribute(i).numValues(); | ||
} | ||
} | ||
this.lattice = new Lattice(dataset,hasMissingValues); | ||
this.entropyComputer = new EntropyComputer(dataset.numInstances(), this.lattice); | ||
this.scorer = new GraphActionScorerPValue(nbInstances, entropyComputer); | ||
this.bestModel = new DecomposableModel(variables, nbValuesForAttribute); | ||
this.pq = new MyPriorityQueue(variables.length, bestModel, scorer); | ||
for (int i = 0; i < variables.length; i++) { | ||
for (int j = i + 1; j < variables.length; j++) { | ||
pq.enableEdge(i, j); | ||
} | ||
} | ||
|
||
|
||
} | ||
|
||
/** | ||
* Launch the modelling | ||
* | ||
* @param dataset the structure of the dataset which the analysis is performed | ||
* @param | ||
* @throws IOException | ||
* | ||
*/ | ||
public void buildModel(Instances dataset,ArffReader loader) throws IOException { | ||
buildModelNoExplore(dataset, loader); | ||
this.explore(); | ||
} | ||
|
||
public void buildModelNoExplore(Instances dataset,ArffReader loader) throws IOException { | ||
this.dataset = dataset; | ||
int[] variables = new int[dataset.numAttributes()]; | ||
int[] nbValuesForAttribute = new int[variables.length]; | ||
for (int i = 0; i < variables.length; i++) { | ||
variables[i] = i; | ||
nbValuesForAttribute[i] = dataset.attribute(i).numValues(); | ||
} | ||
this.lattice = new Lattice(dataset,loader); | ||
this.nbInstances = this.lattice.getNbInstances(); | ||
|
||
|
||
this.entropyComputer = new EntropyComputer(nbInstances, this.lattice); | ||
this.scorer = new GraphActionScorerPValue(nbInstances, entropyComputer); | ||
this.bestModel = new DecomposableModel(variables, nbValuesForAttribute); | ||
this.pq = new MyPriorityQueue(variables.length, bestModel, scorer); | ||
for (int i = 0; i < variables.length; i++) { | ||
for (int j = i + 1; j < variables.length; j++) { | ||
pq.enableEdge(i, j); | ||
} | ||
} | ||
|
||
|
||
} | ||
|
||
/** | ||
* @return the Decomposable model that has been built | ||
*/ | ||
public DecomposableModel getModel() { | ||
return bestModel; | ||
} | ||
|
||
public void explore() { | ||
pq.processStoredModifications(); | ||
double remainingBudget = pValueThreshold; | ||
int step=0; | ||
while (!pq.isEmpty()&& step<maxNSteps) { | ||
int nTests = pq.size(); | ||
|
||
double correctedPValueThreshold = remainingBudget / nTests; | ||
|
||
// System.out.println(pq); | ||
ScoredGraphAction todo = pq.poll(); | ||
|
||
if (todo.getScore()> correctedPValueThreshold) { | ||
break; | ||
} | ||
double usedBudget = todo.getScore()*nTests; | ||
remainingBudget -= usedBudget; | ||
operationsPerformed.add(todo); | ||
bestModel.performAction(todo, bestModel, pq); | ||
step++; | ||
} | ||
} | ||
|
||
public Lattice getLattice() { | ||
return lattice; | ||
} | ||
|
||
} |