Skip to content

fotstrt/BERT-fine-tuning-for-twitter-sentiment-analysis

 
 

Repository files navigation

BERT-fine-tuning-for-twitter-sentiment-analysis

  • Download the pre-trained models

    download the pre-trained models from the https://github.com/google-research/bert#pre-trained-models , unzip the .zip file and put the files in the Bert_base_dir.

  • Run the run_classifier.py

    cd the dir test_bert
    python ./run_classifier.py
    --task_name=twitter
    --do_train=true
    --do_eval=true
    --data_dir=../data
    --vocab_file=../Bert_base_dir/vocab.txt
    --bert_config_file=../Bert_base_dir/bert_config.json
    --init_checkpoint=../Bert_base_dir/bert_model.ckpt
    --max_seq_length=64
    --train_batch_size=32
    --learning_rate=2e-5
    --num_train_epoch=3.0
    --output_dir=../model

    the output model will in the model dir

  • Prediction

    python ./run_classifier.py
    --task_name=twitter
    --do_predict=true
    --data_dir=../data
    --vocab_file=../Bert_base_dir/vocab.txt
    --bert_config_file=../Bert_base_dir/bert_config.json
    --init_checkpoint=../model
    --max_seq_length=64
    --output_dir=../data/bert_result

    the prediction result will in the bert_result dir,if you want to test the acc,you can handle it by youself.In the /data/bert_result/test_result.tsv ,the first column is the probability of class 0.

note! I Run the model in win10,so there is some different.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 53.4%
  • Jupyter Notebook 46.6%