forked from openai/spinningup
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtd3.py
455 lines (360 loc) · 19.3 KB
/
td3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
from copy import deepcopy
import itertools
import numpy as np
import torch
from torch.optim import Adam
import gym
import time
import spinup.algos.pytorch.td3.core as core
from spinup.utils.logx import EpochLogger
from spinup.utils.test_policy import load_policy_and_env
def bucketize_vec(x,n_buckets,max_x):
# Discretize cost into n_buckets buckets
out = np.zeros((len(x),n_buckets))
# All buckets below the accumulated cost are set to 1
for i in range(1,n_buckets+1):
out[:, i - 1] = (x>i*max_x/n_buckets).astype(np.int)
return out
class ReplayBuffer:
"""
A simple FIFO experience replay buffer for SAC agents.
"""
def __init__(self, env, obs_dim, act_dim, size, data_aug=False, p_var=10):
self.env = env
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.obs2_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32)
self.rew_buf = np.zeros(size, dtype=np.float32)
self.done_buf = np.zeros(size, dtype=np.float32)
self.cost_buf = np.zeros(size, dtype=np.float32)
self.ptr, self.size, self.max_size = 0, 0, size
self.data_aug = data_aug
self.p_var = p_var
self.threshold = env.threshold
def store(self, obs, act, rew, next_obs, done, cost):
self.obs_buf[self.ptr] = obs
self.obs2_buf[self.ptr] = next_obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.done_buf[self.ptr] = done
self.cost_buf[self.ptr] = cost
self.ptr = (self.ptr + 1) % self.max_size
self.size = min(self.size + 1, self.max_size)
def sample_batch(self, batch_size=32):
# Note in case we pursue this further after the submission: Get rid of the wrapper and do everything in here!
# This way, we can also implement adaptive penalties to get around the tuning problem.
idxs = np.random.randint(0, self.size, size=batch_size)
obs = np.zeros(self.obs_buf[idxs].shape) + self.obs_buf[idxs]
obs2 = np.zeros(self.obs2_buf[idxs].shape) + self.obs2_buf[idxs]
rew = np.zeros(self.rew_buf[idxs].shape) + self.rew_buf[idxs]
cost = self.cost_buf[idxs]
# Implement data augmentation for the known cost dynamics
if self.data_aug:
buckets = self.env.buckets
assert buckets is None or buckets == self.threshold + 1
if buckets is None:
total_cost = obs[:, -1]
else:
total_cost = np.sum(obs[:, -buckets:], axis=-1)
total_cost_2 = np.minimum(total_cost + cost, self.threshold + 1)
# Perturb the cost to generate new data
p = np.random.randint(-self.p_var, self.p_var + 1)
p = np.maximum(-1 * np.minimum(total_cost, total_cost_2), p)
p = np.minimum((self.threshold + 1 - np.maximum(total_cost, total_cost_2)), p)
if buckets is None:
obs[:, -1] = np.minimum(total_cost + p, self.threshold + 1)
obs2[:, -1] = np.minimum(total_cost_2 + p, self.threshold + 1)
else:
obs[:, -buckets:] = bucketize_vec(total_cost + p, buckets, self.threshold)
obs2[:, -buckets:] = bucketize_vec(total_cost_2 + p, buckets, self.threshold)
rew -= rew * np.logical_and(total_cost_2 + p > self.threshold, total_cost_2 <= self.threshold) * (
1 - self.env.mult_penalty)
# Apply reward multiplier if constraint is broken due to data augmenation
rew -= self.env.add_penalty * np.logical_and(
np.logical_and(total_cost_2 + p > self.threshold, total_cost + p <= self.threshold)
, np.logical_not(np.logical_and(total_cost_2 > self.threshold, total_cost <= self.threshold)))
# Add_penalty only gets added if threshold is broken at this step. Also, we need to check whether it already has been added!
rew -= self.env.cost_penalty * cost * np.logical_and(total_cost_2 + p > self.threshold,
total_cost_2 <= self.threshold)
# Only add cost penalty when total costs are above threshold but had not been without augmentation
rew += self.env.add_penalty * np.logical_and(
np.logical_and(total_cost_2 > self.threshold, total_cost <= self.threshold)
, np.logical_not(np.logical_and(total_cost_2 + p > self.threshold, total_cost + p <= self.threshold)))
# Similarly, we need to remove the penalty when the augmentation causes the threshold not to be broken at a step.
rew += self.env.cost_penalty * cost * np.logical_and(total_cost_2 > self.threshold,
total_cost_2 + p <= self.threshold)
# Again, if we were above the threshold but are not anymore with the augmenation, we need to remove the cost penalty.
rew += np.logical_and(total_cost_2 > self.threshold, total_cost_2 + p <= self.threshold) * rew * (
(1 / self.env.mult_penalty) - 1)
batch = dict(obs=obs,
obs2=obs2,
act=self.act_buf[idxs],
rew=rew,
done=self.done_buf[idxs])
return {k: torch.as_tensor(v, dtype=torch.float32) for k, v in batch.items()}
def td3(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=100, replay_size=int(1e6), gamma=0.99,
polyak=0.995, pi_lr=1e-3, q_lr=1e-3, batch_size=100, start_steps=10000,
update_after=1000, update_every=50, act_noise=0.1, target_noise=0.2,
noise_clip=0.5, policy_delay=2, num_test_episodes=10, max_ep_len=1000, data_aug=False,
logger_kwargs=dict(), save_freq=1,collector_policy=None):
"""
Twin Delayed Deep Deterministic Policy Gradient (TD3)
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: The constructor method for a PyTorch Module with an ``act``
method, a ``pi`` module, a ``q1`` module, and a ``q2`` module.
The ``act`` method and ``pi`` module should accept batches of
observations as inputs, and ``q1`` and ``q2`` should accept a batch
of observations and a batch of actions as inputs. When called,
these should return:
=========== ================ ======================================
Call Output Shape Description
=========== ================ ======================================
``act`` (batch, act_dim) | Numpy array of actions for each
| observation.
``pi`` (batch, act_dim) | Tensor containing actions from policy
| given observations.
``q1`` (batch,) | Tensor containing one current estimate
| of Q* for the provided observations
| and actions. (Critical: make sure to
| flatten this!)
``q2`` (batch,) | Tensor containing the other current
| estimate of Q* for the provided observations
| and actions. (Critical: make sure to
| flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
you provided to TD3.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs to run and train agent.
replay_size (int): Maximum length of replay buffer.
gamma (float): Discount factor. (Always between 0 and 1.)
polyak (float): Interpolation factor in polyak averaging for target
networks. Target networks are updated towards main networks
according to:
.. math:: \\theta_{\\text{targ}} \\leftarrow
\\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta
where :math:`\\rho` is polyak. (Always between 0 and 1, usually
close to 1.)
pi_lr (float): Learning rate for policy.
q_lr (float): Learning rate for Q-networks.
batch_size (int): Minibatch size for SGD.
start_steps (int): Number of steps for uniform-random action selection,
before running real policy. Helps exploration.
update_after (int): Number of env interactions to collect before
starting to do gradient descent updates. Ensures replay buffer
is full enough for useful updates.
update_every (int): Number of env interactions that should elapse
between gradient descent updates. Note: Regardless of how long
you wait between updates, the ratio of env steps to gradient steps
is locked to 1.
act_noise (float): Stddev for Gaussian exploration noise added to
policy at training time. (At test time, no noise is added.)
target_noise (float): Stddev for smoothing noise added to target
policy.
noise_clip (float): Limit for absolute value of target policy
smoothing noise.
policy_delay (int): Policy will only be updated once every
policy_delay times for each update of the Q-networks.
num_test_episodes (int): Number of episodes to test the deterministic
policy at the end of each epoch.
max_ep_len (int): Maximum length of trajectory / episode / rollout.
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
collector policy (string): directory containing a policy for experience collection (replaces the learnt policy)
"""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('Using device:', device)
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
if not collector_policy==None:
_, collector_policy = load_policy_and_env(collector_policy)
torch.manual_seed(seed)
np.random.seed(seed)
env, test_env = env_fn(), env_fn()
obs_dim = env.observation_space.shape
act_dim = env.action_space.shape[0]
# Action limit for clamping: critically, assumes all dimensions share the same bound!
act_limit = env.action_space.high[0]
# Create actor-critic module and target networks
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
ac_targ = deepcopy(ac)
ac.pi=ac.pi.to(device)
ac_targ.pi = ac_targ.pi.to(device)
ac.q1=ac.q1.to(device)
ac_targ.q1 = ac_targ.q1.to(device)
ac.q2=ac.q2.to(device)
ac_targ.q2 = ac_targ.q2.to(device)
# Freeze target networks with respect to optimizers (only update via polyak averaging)
for p in ac_targ.parameters():
p.requires_grad = False
# List of parameters for both Q-networks (save this for convenience)
q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters())
# Experience buffer
replay_buffer = ReplayBuffer(env=env, obs_dim=obs_dim, act_dim=act_dim, size=replay_size, data_aug=data_aug)
# Count variables (protip: try to get a feel for how different size networks behave!)
var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2])
logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n'%var_counts)
# Set up function for computing TD3 Q-losses
def compute_loss_q(data):
o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']
q1 = ac.q1(o.to(device),a.to(device))
q2 = ac.q2(o.to(device),a.to(device))
# Bellman backup for Q functions
with torch.no_grad():
pi_targ = ac_targ.pi(o2.to(device))
# Target policy smoothing
epsilon = torch.randn_like(pi_targ) * target_noise
epsilon = torch.clamp(epsilon, -noise_clip, noise_clip)
a2 = pi_targ + epsilon
a2 = torch.clamp(a2, -act_limit, act_limit)
# Target Q-values
q1_pi_targ = ac_targ.q1(o2.to(device), a2.to(device))
q2_pi_targ = ac_targ.q2(o2.to(device), a2.to(device))
q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ)
backup = r.to(device) + gamma * (1 - d.to(device)) * q_pi_targ
# MSE loss against Bellman backup
loss_q1 = ((q1 - backup)**2).mean()
loss_q2 = ((q2 - backup)**2).mean()
loss_q = loss_q1 + loss_q2
# Useful info for logging
loss_info = dict(Q1Vals=q1.detach().cpu().numpy(),
Q2Vals=q2.detach().cpu().numpy())
return loss_q, loss_info
# Set up function for computing TD3 pi loss
def compute_loss_pi(data):
o = data['obs']
q1_pi = ac.q1(o.to(device), ac.pi(o.to(device)))
return -q1_pi.mean()
# Set up optimizers for policy and q-function
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
q_optimizer = Adam(q_params, lr=q_lr)
# Set up model saving
logger.setup_pytorch_saver(ac)
def update(data, timer):
# First run one gradient descent step for Q1 and Q2
q_optimizer.zero_grad()
loss_q, loss_info = compute_loss_q(data)
loss_q.backward()
q_optimizer.step()
# Record things
logger.store(LossQ=loss_q.item(), **loss_info)
# Possibly update pi and target networks
if timer % policy_delay == 0:
# Freeze Q-networks so you don't waste computational effort
# computing gradients for them during the policy learning step.
for p in q_params:
p.requires_grad = False
# Next run one gradient descent step for pi.
pi_optimizer.zero_grad()
loss_pi = compute_loss_pi(data)
loss_pi.backward()
pi_optimizer.step()
# Unfreeze Q-networks so you can optimize it at next DDPG step.
for p in q_params:
p.requires_grad = True
# Record things
logger.store(LossPi=loss_pi.item())
# Finally, update target networks by polyak averaging.
with torch.no_grad():
for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
# NB: We use an in-place operations "mul_", "add_" to update target
# params, as opposed to "mul" and "add", which would make new tensors.
p_targ.data.mul_(polyak)
p_targ.data.add_((1 - polyak) * p.data)
def get_action(o, noise_scale):
a = ac.act(torch.as_tensor(o, dtype=torch.float32).to(device))
a += noise_scale * np.random.randn(act_dim)
return np.clip(a, -act_limit, act_limit)
def test_agent():
for j in range(num_test_episodes):
o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
while not(d or (ep_len == max_ep_len)):
# Take deterministic actions at test time (noise_scale=0)
o, r, d, _ = test_env.step(get_action(o, 0))
ep_ret += r
ep_len += 1
logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)
test_env.reset()
# Prepare for interaction with environment
total_steps = steps_per_epoch * epochs
start_time = time.time()
o, ep_ret, ep_len= env.reset(), 0, 0
# Main loop: collect experience in env and update/log each epoch
for t in range(total_steps):
# Until start_steps have elapsed, randomly sample actions
# from a uniform distribution for better exploration. Afterwards,
# use the learned policy (with some noise, via act_noise).
if t > start_steps:
if collector_policy is None:
a = get_action(o, act_noise)
else:
a = collector_policy(torch.as_tensor(o, dtype=torch.float32).to(device))
else:
a = env.action_space.sample()
# Step the env
o2, r, d, info = env.step(a)
cost = info["cost"]
ep_ret += r
ep_len += 1
# Ignore the "done" signal if it comes from hitting the time
# horizon (that is, when it's an artificial terminal signal
# that isn't based on the agent's state)
d = False if ep_len==max_ep_len else d
# Store experience to replay buffer
replay_buffer.store(o, a, r, o2, d, cost)
# Super critical, easy to overlook step: make sure to update
# most recent observation!
o = o2
# End of trajectory handling
if d or (ep_len == max_ep_len):
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, ep_ret, ep_len = env.reset(), 0, 0
# Update handling
if t >= update_after and t % update_every == 0:
for j in range(update_every):
batch = replay_buffer.sample_batch(batch_size)
update(data=batch, timer=j)
# End of epoch handling
if (t+1) % steps_per_epoch == 0:
epoch = (t+1) // steps_per_epoch
# Save model
if (epoch % save_freq == 0) or (epoch == epochs):
logger.save_state({'env': env}, None)
# Test the performance of the deterministic version of the agent.
test_agent()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('TestEpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('TestEpLen', average_only=True)
logger.log_tabular('TotalEnvInteracts', t)
logger.log_tabular('Q1Vals', with_min_and_max=True)
logger.log_tabular('Q2Vals', with_min_and_max=True)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossQ', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='HalfCheetah-v2')
parser.add_argument('--hid', type=int, default=256)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99)
parser.add_argument('--seed', '-s', type=int, default=0)
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='td3')
args = parser.parse_args()
from spinup.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
td3(lambda : gym.make(args.env), actor_critic=core.MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l),
gamma=args.gamma, seed=args.seed, epochs=args.epochs,
logger_kwargs=logger_kwargs)