from copy import deepcopy import itertools import numpy as np import torch from torch.optim import Adam import gym import time import spinup.algos.pytorch.td3.core as core from spinup.utils.logx import EpochLogger from spinup.utils.test_policy import load_policy_and_env def bucketize_vec(x,n_buckets,max_x): # Discretize cost into n_buckets buckets out = np.zeros((len(x),n_buckets)) # All buckets below the accumulated cost are set to 1 for i in range(1,n_buckets+1): out[:, i - 1] = (x>i*max_x/n_buckets).astype(np.int) return out class ReplayBuffer: """ A simple FIFO experience replay buffer for SAC agents. """ def __init__(self, env, obs_dim, act_dim, size, data_aug=False, p_var=10): self.env = env self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.obs2_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32) self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32) self.rew_buf = np.zeros(size, dtype=np.float32) self.done_buf = np.zeros(size, dtype=np.float32) self.cost_buf = np.zeros(size, dtype=np.float32) self.ptr, self.size, self.max_size = 0, 0, size self.data_aug = data_aug self.p_var = p_var self.threshold = env.threshold def store(self, obs, act, rew, next_obs, done, cost): self.obs_buf[self.ptr] = obs self.obs2_buf[self.ptr] = next_obs self.act_buf[self.ptr] = act self.rew_buf[self.ptr] = rew self.done_buf[self.ptr] = done self.cost_buf[self.ptr] = cost self.ptr = (self.ptr + 1) % self.max_size self.size = min(self.size + 1, self.max_size) def sample_batch(self, batch_size=32): # Note in case we pursue this further after the submission: Get rid of the wrapper and do everything in here! # This way, we can also implement adaptive penalties to get around the tuning problem. idxs = np.random.randint(0, self.size, size=batch_size) obs = np.zeros(self.obs_buf[idxs].shape) + self.obs_buf[idxs] obs2 = np.zeros(self.obs2_buf[idxs].shape) + self.obs2_buf[idxs] rew = np.zeros(self.rew_buf[idxs].shape) + self.rew_buf[idxs] cost = self.cost_buf[idxs] # Implement data augmentation for the known cost dynamics if self.data_aug: buckets = self.env.buckets assert buckets is None or buckets == self.threshold + 1 if buckets is None: total_cost = obs[:, -1] else: total_cost = np.sum(obs[:, -buckets:], axis=-1) total_cost_2 = np.minimum(total_cost + cost, self.threshold + 1) # Perturb the cost to generate new data p = np.random.randint(-self.p_var, self.p_var + 1) p = np.maximum(-1 * np.minimum(total_cost, total_cost_2), p) p = np.minimum((self.threshold + 1 - np.maximum(total_cost, total_cost_2)), p) if buckets is None: obs[:, -1] = np.minimum(total_cost + p, self.threshold + 1) obs2[:, -1] = np.minimum(total_cost_2 + p, self.threshold + 1) else: obs[:, -buckets:] = bucketize_vec(total_cost + p, buckets, self.threshold) obs2[:, -buckets:] = bucketize_vec(total_cost_2 + p, buckets, self.threshold) rew -= rew * np.logical_and(total_cost_2 + p > self.threshold, total_cost_2 <= self.threshold) * ( 1 - self.env.mult_penalty) # Apply reward multiplier if constraint is broken due to data augmenation rew -= self.env.add_penalty * np.logical_and( np.logical_and(total_cost_2 + p > self.threshold, total_cost + p <= self.threshold) , np.logical_not(np.logical_and(total_cost_2 > self.threshold, total_cost <= self.threshold))) # Add_penalty only gets added if threshold is broken at this step. Also, we need to check whether it already has been added! rew -= self.env.cost_penalty * cost * np.logical_and(total_cost_2 + p > self.threshold, total_cost_2 <= self.threshold) # Only add cost penalty when total costs are above threshold but had not been without augmentation rew += self.env.add_penalty * np.logical_and( np.logical_and(total_cost_2 > self.threshold, total_cost <= self.threshold) , np.logical_not(np.logical_and(total_cost_2 + p > self.threshold, total_cost + p <= self.threshold))) # Similarly, we need to remove the penalty when the augmentation causes the threshold not to be broken at a step. rew += self.env.cost_penalty * cost * np.logical_and(total_cost_2 > self.threshold, total_cost_2 + p <= self.threshold) # Again, if we were above the threshold but are not anymore with the augmenation, we need to remove the cost penalty. rew += np.logical_and(total_cost_2 > self.threshold, total_cost_2 + p <= self.threshold) * rew * ( (1 / self.env.mult_penalty) - 1) batch = dict(obs=obs, obs2=obs2, act=self.act_buf[idxs], rew=rew, done=self.done_buf[idxs]) return {k: torch.as_tensor(v, dtype=torch.float32) for k, v in batch.items()} def td3(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0, steps_per_epoch=4000, epochs=100, replay_size=int(1e6), gamma=0.99, polyak=0.995, pi_lr=1e-3, q_lr=1e-3, batch_size=100, start_steps=10000, update_after=1000, update_every=50, act_noise=0.1, target_noise=0.2, noise_clip=0.5, policy_delay=2, num_test_episodes=10, max_ep_len=1000, data_aug=False, logger_kwargs=dict(), save_freq=1,collector_policy=None): """ Twin Delayed Deep Deterministic Policy Gradient (TD3) Args: env_fn : A function which creates a copy of the environment. The environment must satisfy the OpenAI Gym API. actor_critic: The constructor method for a PyTorch Module with an ``act`` method, a ``pi`` module, a ``q1`` module, and a ``q2`` module. The ``act`` method and ``pi`` module should accept batches of observations as inputs, and ``q1`` and ``q2`` should accept a batch of observations and a batch of actions as inputs. When called, these should return: =========== ================ ====================================== Call Output Shape Description =========== ================ ====================================== ``act`` (batch, act_dim) | Numpy array of actions for each | observation. ``pi`` (batch, act_dim) | Tensor containing actions from policy | given observations. ``q1`` (batch,) | Tensor containing one current estimate | of Q* for the provided observations | and actions. (Critical: make sure to | flatten this!) ``q2`` (batch,) | Tensor containing the other current | estimate of Q* for the provided observations | and actions. (Critical: make sure to | flatten this!) =========== ================ ====================================== ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object you provided to TD3. seed (int): Seed for random number generators. steps_per_epoch (int): Number of steps of interaction (state-action pairs) for the agent and the environment in each epoch. epochs (int): Number of epochs to run and train agent. replay_size (int): Maximum length of replay buffer. gamma (float): Discount factor. (Always between 0 and 1.) polyak (float): Interpolation factor in polyak averaging for target networks. Target networks are updated towards main networks according to: .. math:: \\theta_{\\text{targ}} \\leftarrow \\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta where :math:`\\rho` is polyak. (Always between 0 and 1, usually close to 1.) pi_lr (float): Learning rate for policy. q_lr (float): Learning rate for Q-networks. batch_size (int): Minibatch size for SGD. start_steps (int): Number of steps for uniform-random action selection, before running real policy. Helps exploration. update_after (int): Number of env interactions to collect before starting to do gradient descent updates. Ensures replay buffer is full enough for useful updates. update_every (int): Number of env interactions that should elapse between gradient descent updates. Note: Regardless of how long you wait between updates, the ratio of env steps to gradient steps is locked to 1. act_noise (float): Stddev for Gaussian exploration noise added to policy at training time. (At test time, no noise is added.) target_noise (float): Stddev for smoothing noise added to target policy. noise_clip (float): Limit for absolute value of target policy smoothing noise. policy_delay (int): Policy will only be updated once every policy_delay times for each update of the Q-networks. num_test_episodes (int): Number of episodes to test the deterministic policy at the end of each epoch. max_ep_len (int): Maximum length of trajectory / episode / rollout. logger_kwargs (dict): Keyword args for EpochLogger. save_freq (int): How often (in terms of gap between epochs) to save the current policy and value function. collector policy (string): directory containing a policy for experience collection (replaces the learnt policy) """ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Using device:', device) logger = EpochLogger(**logger_kwargs) logger.save_config(locals()) if not collector_policy==None: _, collector_policy = load_policy_and_env(collector_policy) torch.manual_seed(seed) np.random.seed(seed) env, test_env = env_fn(), env_fn() obs_dim = env.observation_space.shape act_dim = env.action_space.shape[0] # Action limit for clamping: critically, assumes all dimensions share the same bound! act_limit = env.action_space.high[0] # Create actor-critic module and target networks ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs) ac_targ = deepcopy(ac) ac.pi=ac.pi.to(device) ac_targ.pi = ac_targ.pi.to(device) ac.q1=ac.q1.to(device) ac_targ.q1 = ac_targ.q1.to(device) ac.q2=ac.q2.to(device) ac_targ.q2 = ac_targ.q2.to(device) # Freeze target networks with respect to optimizers (only update via polyak averaging) for p in ac_targ.parameters(): p.requires_grad = False # List of parameters for both Q-networks (save this for convenience) q_params = itertools.chain(ac.q1.parameters(), ac.q2.parameters()) # Experience buffer replay_buffer = ReplayBuffer(env=env, obs_dim=obs_dim, act_dim=act_dim, size=replay_size, data_aug=data_aug) # Count variables (protip: try to get a feel for how different size networks behave!) var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q1, ac.q2]) logger.log('\nNumber of parameters: \t pi: %d, \t q1: %d, \t q2: %d\n'%var_counts) # Set up function for computing TD3 Q-losses def compute_loss_q(data): o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done'] q1 = ac.q1(o.to(device),a.to(device)) q2 = ac.q2(o.to(device),a.to(device)) # Bellman backup for Q functions with torch.no_grad(): pi_targ = ac_targ.pi(o2.to(device)) # Target policy smoothing epsilon = torch.randn_like(pi_targ) * target_noise epsilon = torch.clamp(epsilon, -noise_clip, noise_clip) a2 = pi_targ + epsilon a2 = torch.clamp(a2, -act_limit, act_limit) # Target Q-values q1_pi_targ = ac_targ.q1(o2.to(device), a2.to(device)) q2_pi_targ = ac_targ.q2(o2.to(device), a2.to(device)) q_pi_targ = torch.min(q1_pi_targ, q2_pi_targ) backup = r.to(device) + gamma * (1 - d.to(device)) * q_pi_targ # MSE loss against Bellman backup loss_q1 = ((q1 - backup)**2).mean() loss_q2 = ((q2 - backup)**2).mean() loss_q = loss_q1 + loss_q2 # Useful info for logging loss_info = dict(Q1Vals=q1.detach().cpu().numpy(), Q2Vals=q2.detach().cpu().numpy()) return loss_q, loss_info # Set up function for computing TD3 pi loss def compute_loss_pi(data): o = data['obs'] q1_pi = ac.q1(o.to(device), ac.pi(o.to(device))) return -q1_pi.mean() # Set up optimizers for policy and q-function pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr) q_optimizer = Adam(q_params, lr=q_lr) # Set up model saving logger.setup_pytorch_saver(ac) def update(data, timer): # First run one gradient descent step for Q1 and Q2 q_optimizer.zero_grad() loss_q, loss_info = compute_loss_q(data) loss_q.backward() q_optimizer.step() # Record things logger.store(LossQ=loss_q.item(), **loss_info) # Possibly update pi and target networks if timer % policy_delay == 0: # Freeze Q-networks so you don't waste computational effort # computing gradients for them during the policy learning step. for p in q_params: p.requires_grad = False # Next run one gradient descent step for pi. pi_optimizer.zero_grad() loss_pi = compute_loss_pi(data) loss_pi.backward() pi_optimizer.step() # Unfreeze Q-networks so you can optimize it at next DDPG step. for p in q_params: p.requires_grad = True # Record things logger.store(LossPi=loss_pi.item()) # Finally, update target networks by polyak averaging. with torch.no_grad(): for p, p_targ in zip(ac.parameters(), ac_targ.parameters()): # NB: We use an in-place operations "mul_", "add_" to update target # params, as opposed to "mul" and "add", which would make new tensors. p_targ.data.mul_(polyak) p_targ.data.add_((1 - polyak) * p.data) def get_action(o, noise_scale): a = ac.act(torch.as_tensor(o, dtype=torch.float32).to(device)) a += noise_scale * np.random.randn(act_dim) return np.clip(a, -act_limit, act_limit) def test_agent(): for j in range(num_test_episodes): o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0 while not(d or (ep_len == max_ep_len)): # Take deterministic actions at test time (noise_scale=0) o, r, d, _ = test_env.step(get_action(o, 0)) ep_ret += r ep_len += 1 logger.store(TestEpRet=ep_ret, TestEpLen=ep_len) test_env.reset() # Prepare for interaction with environment total_steps = steps_per_epoch * epochs start_time = time.time() o, ep_ret, ep_len= env.reset(), 0, 0 # Main loop: collect experience in env and update/log each epoch for t in range(total_steps): # Until start_steps have elapsed, randomly sample actions # from a uniform distribution for better exploration. Afterwards, # use the learned policy (with some noise, via act_noise). if t > start_steps: if collector_policy is None: a = get_action(o, act_noise) else: a = collector_policy(torch.as_tensor(o, dtype=torch.float32).to(device)) else: a = env.action_space.sample() # Step the env o2, r, d, info = env.step(a) cost = info["cost"] ep_ret += r ep_len += 1 # Ignore the "done" signal if it comes from hitting the time # horizon (that is, when it's an artificial terminal signal # that isn't based on the agent's state) d = False if ep_len==max_ep_len else d # Store experience to replay buffer replay_buffer.store(o, a, r, o2, d, cost) # Super critical, easy to overlook step: make sure to update # most recent observation! o = o2 # End of trajectory handling if d or (ep_len == max_ep_len): logger.store(EpRet=ep_ret, EpLen=ep_len) o, ep_ret, ep_len = env.reset(), 0, 0 # Update handling if t >= update_after and t % update_every == 0: for j in range(update_every): batch = replay_buffer.sample_batch(batch_size) update(data=batch, timer=j) # End of epoch handling if (t+1) % steps_per_epoch == 0: epoch = (t+1) // steps_per_epoch # Save model if (epoch % save_freq == 0) or (epoch == epochs): logger.save_state({'env': env}, None) # Test the performance of the deterministic version of the agent. test_agent() # Log info about epoch logger.log_tabular('Epoch', epoch) logger.log_tabular('EpRet', with_min_and_max=True) logger.log_tabular('TestEpRet', with_min_and_max=True) logger.log_tabular('EpLen', average_only=True) logger.log_tabular('TestEpLen', average_only=True) logger.log_tabular('TotalEnvInteracts', t) logger.log_tabular('Q1Vals', with_min_and_max=True) logger.log_tabular('Q2Vals', with_min_and_max=True) logger.log_tabular('LossPi', average_only=True) logger.log_tabular('LossQ', average_only=True) logger.log_tabular('Time', time.time()-start_time) logger.dump_tabular() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env', type=str, default='HalfCheetah-v2') parser.add_argument('--hid', type=int, default=256) parser.add_argument('--l', type=int, default=2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--seed', '-s', type=int, default=0) parser.add_argument('--epochs', type=int, default=50) parser.add_argument('--exp_name', type=str, default='td3') args = parser.parse_args() from spinup.utils.run_utils import setup_logger_kwargs logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed) td3(lambda : gym.make(args.env), actor_critic=core.MLPActorCritic, ac_kwargs=dict(hidden_sizes=[args.hid]*args.l), gamma=args.gamma, seed=args.seed, epochs=args.epochs, logger_kwargs=logger_kwargs)