Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Local execution e2e training #1472

Open
wants to merge 40 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 9 commits
Commits
Show all changes
40 commits
Select commit Hold shift + click to select a range
6adb290
temporary weight adjust index
reyna-abhyankar Aug 25, 2024
61697c2
Loss function
reyna-abhyankar Aug 27, 2024
b56c046
Add cuda test for loss function
reyna-abhyankar Aug 27, 2024
f75a3d4
Format
reyna-abhyankar Aug 27, 2024
f74711f
Refactor and build optimizer kernels, op
reyna-abhyankar Aug 27, 2024
40c6252
Finish optimizer local backing
reyna-abhyankar Aug 27, 2024
ad9b9ea
Format
reyna-abhyankar Aug 27, 2024
1ddfade
E2E update test
reyna-abhyankar Aug 27, 2024
dde9496
Format
reyna-abhyankar Aug 27, 2024
59635d8
Small fixes
reyna-abhyankar Sep 11, 2024
103ef07
Format
reyna-abhyankar Sep 11, 2024
f48f9ff
Fix test and small issues
reyna-abhyankar Sep 18, 2024
189c9c8
Format
reyna-abhyankar Sep 18, 2024
d93f464
Merge branch 'repo-refactor' into local-e2e-training
reyna-abhyankar Oct 1, 2024
b5647c8
Pass tests after merge
reyna-abhyankar Oct 1, 2024
f5ff91e
Fix input/weight differentiation
reyna-abhyankar Oct 1, 2024
7470e71
Fix signature to use unified rep
reyna-abhyankar Oct 1, 2024
deece1b
Fix model training instance abstraction
reyna-abhyankar Oct 1, 2024
1d3cc94
Change subcase test name
reyna-abhyankar Oct 1, 2024
3cf5d08
Quick fixes
reyna-abhyankar Oct 16, 2024
79ef4c9
Refactor training backing and instance
reyna-abhyankar Oct 22, 2024
a73b1c3
Expose op folders publicly
reyna-abhyankar Nov 13, 2024
c6fed29
Add tensor type, operate over reduced tensor
reyna-abhyankar Nov 13, 2024
0cdfb1a
Fixes
reyna-abhyankar Jan 7, 2025
9d252b3
Remove tensor lower
reyna-abhyankar Jan 15, 2025
895c117
Add tensor and task lowering scheme
reyna-abhyankar Jan 17, 2025
411017d
Build local exec
reyna-abhyankar Jan 22, 2025
0128abb
Disaggregate local backend
reyna-abhyankar Feb 1, 2025
277f8c2
Update task binding interface and cost estimator
reyna-abhyankar Feb 1, 2025
377c6aa
Merge master into local execution
reyna-abhyankar Feb 4, 2025
8efaec7
Build
reyna-abhyankar Feb 6, 2025
1dc1398
Format
reyna-abhyankar Feb 6, 2025
17ad5c8
Split task spec files
reyna-abhyankar Feb 6, 2025
639c2c1
Delete outdated sim environment file
reyna-abhyankar Feb 6, 2025
a697044
Finish API
reyna-abhyankar Feb 13, 2025
187a8d5
Add tests for allocated and unallocated
reyna-abhyankar Feb 13, 2025
a0f8113
Fix nonnegative
reyna-abhyankar Feb 13, 2025
b1eab94
Format
reyna-abhyankar Feb 13, 2025
b532c50
Pass allocated-unallocated tests
reyna-abhyankar Feb 13, 2025
f28e5c2
Update task registry tests
reyna-abhyankar Feb 13, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions lib/kernels/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,8 @@ file(GLOB_RECURSE SRC
LIST_DIRECTORIES False
src/*.cc
src/cuda/cuda_helper.cu
src/cuda/loss_function_kernels.cu
src/cuda/optimizer_kernels.cu
src/cuda/ops/*.cu
)

Expand Down
13 changes: 10 additions & 3 deletions lib/kernels/include/kernels/array_shape.h
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,16 @@ struct ArrayShape {
std::optional<std::size_t> at_maybe(legion_dim_t) const;
std::optional<std::size_t> at_maybe(ff_dim_t) const;

ArrayShape
sub_shape(std::optional<std::variant<ff_dim_t, legion_dim_t>> start,
std::optional<std::variant<ff_dim_t, legion_dim_t>> end) const;
ArrayShape sub_shape(legion_dim_t start, ff_dim_t end) const;

ArrayShape sub_shape(std::optional<ff_dim_t> start,
std::optional<ff_dim_t> end) const;

ArrayShape sub_shape(std::optional<legion_dim_t> start,
std::optional<legion_dim_t> end) const;

bool operator==(ArrayShape const &) const;
bool operator!=(ArrayShape const &) const;

public:
LegionTensorDims dims;
Expand Down
9 changes: 7 additions & 2 deletions lib/kernels/include/kernels/optimizer_kernels.h
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
#ifndef _FLEXFLOW_KERNELS_INCLUDE_KERNELS_OPTIMIZER_KERNELS_H
#define _FLEXFLOW_KERNELS_INCLUDE_KERNELS_OPTIMIZER_KERNELS_H

#include "device.h"
#include "kernels/device.h"
#include "kernels/ff_handle.h"

namespace FlexFlow {

Expand All @@ -20,7 +21,8 @@ void sgd_nccl_update_task_gpu(ffStream_t,
float lr,
float momentum,
bool nesterov,
float weight_decay PerDeviceFFHandle const &,
float weight_decay,
PerDeviceFFHandle const &,
float const *weight_grad_ptr,
size_t size,
float *weight_ptr,
Expand All @@ -32,6 +34,8 @@ void adam_ps_update_task_gpu(ffStream_t,
float beta2,
float weight_decay,
float epsilon,
size_t size,
int num_replicas,
float const *weight_grad_ptr,
float *adam_m_ptr,
float *adam_v_ptr,
Expand All @@ -43,6 +47,7 @@ void adam_nccl_update_task_gpu(ffStream_t,
float beta2,
float weight_decay,
float epsilon,
size_t size,
PerDeviceFFHandle const &,
float const *weight_grad_ptr,
float *adam_m_ptr,
Expand Down
38 changes: 35 additions & 3 deletions lib/kernels/src/array_shape.cc
Original file line number Diff line number Diff line change
Expand Up @@ -50,12 +50,36 @@
return dims.at(legion_dim_from_ff_dim(idx, this->num_dims()));
}

ArrayShape ArrayShape::sub_shape(
std::optional<std::variant<ff_dim_t, legion_dim_t>> start,
std::optional<std::variant<ff_dim_t, legion_dim_t>> end) const {
ArrayShape ArrayShape::sub_shape(legion_dim_t start, ff_dim_t end) const {

Check warning on line 53 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L53

Added line #L53 was not covered by tests
NOT_IMPLEMENTED();
}

ArrayShape ArrayShape::sub_shape(std::optional<ff_dim_t> start,

Check warning on line 57 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L57

Added line #L57 was not covered by tests
std::optional<ff_dim_t> end) const {
std::vector<size_t> new_shape;
ff_dim_t start_idx = start.value_or(ff_dim_t{0});
ff_dim_t end_idx = end.value_or(ff_dim_t{this->num_dims()});

Check warning on line 61 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L59-L61

Added lines #L59 - L61 were not covered by tests

while (start_idx < end_idx) {
new_shape.push_back(this->at(start_idx));
start_idx = ff_dim_t{start_idx.value + 1};

Check warning on line 65 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L64-L65

Added lines #L64 - L65 were not covered by tests
}
return ArrayShape{new_shape};
}

Check warning on line 68 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L67-L68

Added lines #L67 - L68 were not covered by tests

ArrayShape ArrayShape::sub_shape(std::optional<legion_dim_t> start,

Check warning on line 70 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L70

Added line #L70 was not covered by tests
std::optional<legion_dim_t> end) const {
std::vector<size_t> new_shape;
legion_dim_t start_idx = start.value_or(legion_dim_t{0});
legion_dim_t end_idx = end.value_or(legion_dim_t{this->num_dims()});

Check warning on line 74 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L72-L74

Added lines #L72 - L74 were not covered by tests

while (start_idx < end_idx) {
new_shape.push_back(this->at(start_idx));
start_idx = add_to_legion_dim(start_idx, 1);

Check warning on line 78 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L77-L78

Added lines #L77 - L78 were not covered by tests
}
return ArrayShape{new_shape};
}

Check warning on line 81 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L80-L81

Added lines #L80 - L81 were not covered by tests

std::optional<std::size_t> ArrayShape::at_maybe(legion_dim_t index) const {
if (index.value < dims.size()) {
return dims.at(index);
Expand All @@ -77,6 +101,14 @@
dtype};
}

bool ArrayShape::operator==(ArrayShape const &other) const {
return this->dims == other.dims;
}

bool ArrayShape::operator!=(ArrayShape const &other) const {
return this->dims != other.dims;

Check warning on line 109 in lib/kernels/src/array_shape.cc

View check run for this annotation

Codecov / codecov/patch

lib/kernels/src/array_shape.cc#L108-L109

Added lines #L108 - L109 were not covered by tests
}

std::string format_as(ArrayShape const &x) {
std::ostringstream oss;
oss << "<ArrayShape";
Expand Down
6 changes: 6 additions & 0 deletions lib/kernels/src/cuda/cuda_helper.cu
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,12 @@ __global__ void scale_kernel(float *ptr, coord_t size, float a, float b) {
}
}

__global__ void scale_kernel(float *ptr, unsigned long size, float a, float b) {
CUDA_KERNEL_LOOP(i, size) {
ptr[i] = (b - a) * ptr[i] + a;
}
}

__global__ void ones_kernel(float *ptr, coord_t size) {
CUDA_KERNEL_LOOP(i, size) {
ptr[i] = 1.0f;
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,8 @@
* limitations under the License.
*/

#include "device.h"
#include "kernels/nccl.h"
#include "kernels/optimizer_kernels.h"

namespace FlexFlow {
Expand Down Expand Up @@ -40,66 +42,70 @@ __global__ void sgd_update(size_t count,
}
}

__host__ void SGDOptimizer::ps_update_task_gpu(SGDOptimizer const *op,
float const *w_grad_ptr,
size_t size,
int num_replicas,
float *w_ptr,
float *v_ptr) {
cudaStream_t stream;
void sgd_ps_update_task_gpu(cudaStream_t stream,
float lr,
float momentum,
bool nesterov,
float weight_decay,
float const *weight_grad_ptr,
size_t size,
int num_replicas,
float *weight_ptr,
float *sgd_v_ptr) {
checkCUDA(get_legion_stream(&stream));
// Step 1: Gather gradients in the first replica
for (int i = 1; i < num_replicas; i++) {
float const *src = w_grad_ptr + i * size;
float const *src = weight_grad_ptr + i * size;
apply_add_with_scale<float>
<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(
(float *)w_grad_ptr, src, size, 1.0f);
(float *)weight_grad_ptr, src, size, 1.0f);
}
// checkCUDA(cudaDeviceSynchronize());
// Step 2: SGD update
sgd_update<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(
size,
op->lr,
op->weight_decay,
op->momentum,
op->nesterov,
w_grad_ptr,
v_ptr,
w_ptr);
sgd_update<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(size,
lr,
weight_decay,
momentum,
nesterov,
weight_grad_ptr,
sgd_v_ptr,
weight_ptr);
// checkCUDA(cudaDeviceSynchronize());
}

#ifdef FF_USE_NCCL
__host__ void SGDOptimizer::nccl_update_task_gpu(SGDOptimizer const *op,
PerDeviceOpState const *meta,
float const *w_grad_ptr,
size_t size,
float *w_ptr,
float *v_ptr) {
void sgd_nccl_update_task_gpu(cudaStream_t stream,
float lr,
float momentum,
bool nesterov,
float weight_decay,
PerDeviceFFHandle const &handle,
float const *weight_grad_ptr,
size_t size,
float *weight_ptr,
float *sgd_v_ptr) {
// Use NCCL to sync gradients
// fprintf(stderr, "weight(%p) Before ncclAllReduce...\n", w_grad_ptr);
cudaStream_t stream;
checkCUDA(get_legion_stream(&stream));
checkNCCL(ncclAllReduce(w_grad_ptr,
(float *)w_grad_ptr,
checkNCCL(ncclAllReduce(weight_grad_ptr,
(float *)weight_grad_ptr,
size,
ncclFloat,
ncclSum,
meta->handle.ncclComm,
ncclDataType_t::ncclFloat,
ncclRedOp_t::ncclSum,
handle.ncclComm,
stream));
// fprintf(stderr, "weight(%p) After ncclAllReduce...\n", w_grad_ptr);
// print_tensor<float>((float*)w_grad_ptr, 16, "[After ncclAllReduce]");

// Step 2: SGD update
sgd_update<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(
size,
op->lr,
op->weight_decay,
op->momentum,
op->nesterov,
w_grad_ptr,
v_ptr,
w_ptr);
sgd_update<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(size,
lr,
weight_decay,
momentum,
nesterov,
weight_grad_ptr,
sgd_v_ptr,
weight_ptr);
// checkCUDA(cudaDeviceSynchronize());
}
#endif
Expand Down Expand Up @@ -144,71 +150,79 @@ __global__ void adam_update(int count,
}
}

__host__ void AdamOptimizer::ps_update_task_gpu(AdamOptimizer const *op,
float const *w_grad_ptr,
size_t size,
int num_replicas,
float *w_ptr,
float *v_ptr,
float *m_ptr) {
cudaStream_t stream;
void adam_ps_update_task_gpu(cudaStream_t stream,
float alpha_t,
float beta1,
float beta2,
float weight_decay,
float epsilon,
size_t size,
int num_replicas,
float const *weight_grad_ptr,
float *adam_m_ptr,
float *adam_v_ptr,
float *weight_ptr) {
checkCUDA(get_legion_stream(&stream));
// Step 1: Gather gradients in the first replica
for (int i = 1; i < num_replicas; i++) {
float const *src = w_grad_ptr + i * size;
float const *src = weight_grad_ptr + i * size;
add_kernel<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(
size, 1.0f, src, (float *)w_grad_ptr);
size, 1.0f, src, (float *)weight_grad_ptr);
}
// checkCUDA(cudaDeviceSynchronize());
// fprintf(stderr, "alpha = %.8lf alpha_t = %.8lf decay = %.8lf\n",
// op->alpha, op->alpha_t, op->weight_decay);
// Step 2: Adam update
adam_update<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(
size,
op->alpha_t,
op->beta1,
op->beta2,
op->weight_decay,
op->epsilon,
w_grad_ptr,
m_ptr,
v_ptr,
w_ptr);
alpha_t,
beta1,
beta2,
weight_decay,
epsilon,
weight_grad_ptr,
adam_m_ptr,
adam_v_ptr,
weight_ptr);
// checkCUDA(cudaDeviceSynchronize());
}

#ifdef FF_USE_NCCL
__host__ void AdamOptimizer::nccl_update_task_gpu(AdamOptimizer const *op,
PerDeviceOpState const *meta,
float const *w_grad_ptr,
size_t size,
float *w_ptr,
float *v_ptr,
float *m_ptr) {
void adam_nccl_update_task_gpu(cudaStream_t stream,
float alpha_t,
float beta1,
float beta2,
float weight_decay,
float epsilon,
size_t size,
PerDeviceFFHandle const &handle,
float const *weight_grad_ptr,
float *adam_m_ptr,
float *adam_v_ptr,
float *weight_ptr) {
// Use NCCL to sync gradients
cudaStream_t stream;
checkCUDA(get_legion_stream(&stream));
checkNCCL(ncclAllReduce(w_grad_ptr,
(float *)w_grad_ptr,
checkNCCL(ncclAllReduce(weight_grad_ptr,
(float *)weight_grad_ptr,
size,
ncclFloat,
ncclSum,
meta->handle.ncclComm,
ncclDataType_t::ncclFloat,
ncclRedOp_t::ncclSum,
handle.ncclComm,
stream));
// fprintf(stderr, "alpha = %.8lf alpha_t = %.8lf decay = %.8lf\n",
// op->alpha, op->alpha_t, op->weight_decay);
// Step 2: Adam update
adam_update<<<GET_BLOCKS(size), CUDA_NUM_THREADS, 0, stream>>>(
size,
op->alpha_t,
op->beta1,
op->beta2,
op->weight_decay,
op->epsilon,
w_grad_ptr,
m_ptr,
v_ptr,
w_ptr);
alpha_t,
beta1,
beta2,
weight_decay,
epsilon,
weight_grad_ptr,
adam_m_ptr,
adam_v_ptr,
weight_ptr);
// checkCUDA(cudaDeviceSynchronize());
}
#endif
Expand Down
1 change: 1 addition & 0 deletions lib/kernels/src/device.h
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,7 @@ inline int GET_BLOCKS(int const N) {
}

__global__ void scale_kernel(float *ptr, size_t size, float a, float b);
__global__ void scale_kernel(float *ptr, unsigned long size, float a, float b);

__global__ void ones_kernel(float *ptr, size_t size);

Expand Down
Loading
Loading