Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

1/4pi factor #62

Merged
merged 2 commits into from
Nov 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions docs/fortran-c.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ gradient

.. math::

u(x) = \sum_{j=1}^{N} \frac{c_{j}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{1}{\|x-x_{j}\|} \right) \, .
u(x) = \sum_{j=1}^{N} \frac{c_{j}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{1}{4\pi\|x-x_{j}\|} \right) \, .

Here $x_{j}$ are the source locations, $c_{j}$ are the
charge strengths and $v_{j}$ are the dipole strengths,
Expand Down Expand Up @@ -52,7 +52,7 @@ In general, the subroutine names take the following form::
- t: Evaluate $u$ and its gradient at $t_{i}$, a collection of target locations specified by the user.
- st: Evaluate $u$ and its gradient at both source and target locations $x_{i}$ and $t_{i}$.

- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/\|x-x_{j}\|)$
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/4\pi\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/4\pi\|x-x_{j}\|)$

- c: charges
- d: dipoles
Expand Down Expand Up @@ -175,7 +175,7 @@ gradient

.. math::

u(x) = \sum_{j=1}^{N} \frac{c_{j} e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} \right) \, .
u(x) = \sum_{j=1}^{N} \frac{c_{j} e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} \right) \, .

Here $x_{j}$ are the source locations, $c_{j}$ are the
charge strengths and $v_{j}$ are the dipole strengths,
Expand Down Expand Up @@ -207,7 +207,7 @@ In general, the subroutine names take the following form::
- t: Evaluate $u$ and its gradient at $t_{i}$, a collection of target locations specified by the user.
- st: Evaluate $u$ and its gradient at both source and target locations $x_{i}$ and $t_{i}$.

- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/\|x-x_{j}\|)$
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/4\pi\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/4\pi\|x-x_{j}\|)$

- c: charges
- d: dipoles
Expand Down Expand Up @@ -320,7 +320,7 @@ denote the Stokeslet given by


.. math::
\mathcal{G}^{\textrm{stok}}(x,y)=\frac{1}{2 \|x-y\|^3}
\mathcal{G}^{\textrm{stok}}(x,y)=\frac{1}{8\pi \|x-y\|^3}
\begin{bmatrix}
(x_{1}-y_{1})^2 + \|x-y \|^2 & (x_{1}-y_{1})(x_{2}-y_{2}) &
(x_{1}-y_{1})(x_{3}-y_{3}) \\
Expand All @@ -335,7 +335,7 @@ a vector $v$ is given by

.. math::
v\cdot \mathcal{T}^{\textrm{stok}}(x,y) =
\frac{3 v \cdot (x-y)}{\|x-y \|^5}
\frac{3 v \cdot (x-y)}{4\pi\|x-y \|^5}
\begin{bmatrix}
(x_{1}-y_{1})^2 & (x_{1}-y_{1})(x_{2}-y_{2}) &
(x_{1}-y_{1})(x_{3}-y_{3}) \\
Expand Down Expand Up @@ -451,7 +451,7 @@ divergence

.. math::

E(x) = \sum_{j=1}^{N} \nabla \times \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} M_{j} + \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} J_{j} + \nabla \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} \rho_{j} \, .
E(x) = \sum_{j=1}^{N} \nabla \times \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} M_{j} + \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} J_{j} + \nabla \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} \rho_{j} \, .

Here $x_{j}$ are the source locations,
$M_{j}$ are the magnetic current densities,
Expand Down
72 changes: 36 additions & 36 deletions docs/fortrandocs_helm.raw
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -57,7 +57,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -106,7 +106,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -147,7 +147,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -198,7 +198,7 @@ This subroutine evaluates the potential

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -237,7 +237,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -286,7 +286,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -327,7 +327,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -378,7 +378,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -419,7 +419,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -470,7 +470,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -513,7 +513,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -566,7 +566,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -609,7 +609,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -658,7 +658,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -703,7 +703,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -754,7 +754,7 @@ This subroutine evaluates the potential

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -797,7 +797,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -846,7 +846,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -891,7 +891,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -942,7 +942,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -987,7 +987,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1038,7 +1038,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1085,7 +1085,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1138,7 +1138,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1183,7 +1183,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1234,7 +1234,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1283,7 +1283,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1338,7 +1338,7 @@ This subroutine evaluates the potential

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1383,7 +1383,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1434,7 +1434,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1483,7 +1483,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1538,7 +1538,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1585,7 +1585,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1638,7 +1638,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1689,7 +1689,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down
Loading