Skip to content

Commit

Permalink
Merge pull request #62 from flatironinstitute/4pi
Browse files Browse the repository at this point in the history
1/4pi factor
  • Loading branch information
lu1and10 authored Nov 21, 2024
2 parents dabaead + ede2e0d commit 3766fef
Show file tree
Hide file tree
Showing 54 changed files with 824 additions and 766 deletions.
14 changes: 7 additions & 7 deletions docs/fortran-c.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ gradient

.. math::
u(x) = \sum_{j=1}^{N} \frac{c_{j}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{1}{\|x-x_{j}\|} \right) \, .
u(x) = \sum_{j=1}^{N} \frac{c_{j}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{1}{4\pi\|x-x_{j}\|} \right) \, .
Here $x_{j}$ are the source locations, $c_{j}$ are the
charge strengths and $v_{j}$ are the dipole strengths,
Expand Down Expand Up @@ -52,7 +52,7 @@ In general, the subroutine names take the following form::
- t: Evaluate $u$ and its gradient at $t_{i}$, a collection of target locations specified by the user.
- st: Evaluate $u$ and its gradient at both source and target locations $x_{i}$ and $t_{i}$.

- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/\|x-x_{j}\|)$
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/4\pi\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/4\pi\|x-x_{j}\|)$

- c: charges
- d: dipoles
Expand Down Expand Up @@ -175,7 +175,7 @@ gradient

.. math::
u(x) = \sum_{j=1}^{N} \frac{c_{j} e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} \right) \, .
u(x) = \sum_{j=1}^{N} \frac{c_{j} e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} \right) \, .
Here $x_{j}$ are the source locations, $c_{j}$ are the
charge strengths and $v_{j}$ are the dipole strengths,
Expand Down Expand Up @@ -207,7 +207,7 @@ In general, the subroutine names take the following form::
- t: Evaluate $u$ and its gradient at $t_{i}$, a collection of target locations specified by the user.
- st: Evaluate $u$ and its gradient at both source and target locations $x_{i}$ and $t_{i}$.

- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/\|x-x_{j}\|)$
- <int-ker>: kernel of interaction (charges/dipoles/both). The charge interactions are given by $c_{j}/4\pi\|x-x_{j}\| $, and the dipole interactions are given by $-v_{j} \cdot \nabla (1/4\pi\|x-x_{j}\|)$

- c: charges
- d: dipoles
Expand Down Expand Up @@ -320,7 +320,7 @@ denote the Stokeslet given by


.. math::
\mathcal{G}^{\textrm{stok}}(x,y)=\frac{1}{2 \|x-y\|^3}
\mathcal{G}^{\textrm{stok}}(x,y)=\frac{1}{8\pi \|x-y\|^3}
\begin{bmatrix}
(x_{1}-y_{1})^2 + \|x-y \|^2 & (x_{1}-y_{1})(x_{2}-y_{2}) &
(x_{1}-y_{1})(x_{3}-y_{3}) \\
Expand All @@ -335,7 +335,7 @@ a vector $v$ is given by

.. math::
v\cdot \mathcal{T}^{\textrm{stok}}(x,y) =
\frac{3 v \cdot (x-y)}{\|x-y \|^5}
\frac{3 v \cdot (x-y)}{4\pi\|x-y \|^5}
\begin{bmatrix}
(x_{1}-y_{1})^2 & (x_{1}-y_{1})(x_{2}-y_{2}) &
(x_{1}-y_{1})(x_{3}-y_{3}) \\
Expand Down Expand Up @@ -451,7 +451,7 @@ divergence

.. math::
E(x) = \sum_{j=1}^{N} \nabla \times \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} M_{j} + \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} J_{j} + \nabla \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} \rho_{j} \, .
E(x) = \sum_{j=1}^{N} \nabla \times \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} M_{j} + \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|} J_{j} + \nabla \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|} \rho_{j} \, .
Here $x_{j}$ are the source locations,
$M_{j}$ are the magnetic current densities,
Expand Down
72 changes: 36 additions & 36 deletions docs/fortrandocs_helm.raw
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -57,7 +57,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -106,7 +106,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -147,7 +147,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -198,7 +198,7 @@ This subroutine evaluates the potential

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -237,7 +237,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -286,7 +286,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -327,7 +327,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -378,7 +378,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -419,7 +419,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -470,7 +470,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -513,7 +513,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source locations $x=x_{j}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -566,7 +566,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -609,7 +609,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -658,7 +658,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -703,7 +703,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -754,7 +754,7 @@ This subroutine evaluates the potential

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -797,7 +797,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -846,7 +846,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -891,7 +891,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -942,7 +942,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -987,7 +987,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1038,7 +1038,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1085,7 +1085,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the target locations $x=t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1138,7 +1138,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1183,7 +1183,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1234,7 +1234,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1283,7 +1283,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|}
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|}

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1338,7 +1338,7 @@ This subroutine evaluates the potential

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1383,7 +1383,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1434,7 +1434,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = -\sum_{j=1}^{N} v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1483,7 +1483,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = -\sum_{j=1}^{N} v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1538,7 +1538,7 @@ This subroutine evaluates the potential

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1585,7 +1585,7 @@ This subroutine evaluates the potential

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1638,7 +1638,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u(x) = \sum_{j=1}^{N} c_{j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down Expand Up @@ -1689,7 +1689,7 @@ This subroutine evaluates the potential and its gradient

.. math::

u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{\|x-x_{j}\|}\right)
u_{\ell}(x) = \sum_{j=1}^{N} c_{\ell,j} \frac{e^{ik\|x- x_{j}\|}}{4\pi\|x-x_{j}\|} - v_{\ell,j} \cdot \nabla \left( \frac{e^{ik\|x-x_{j}\|}}{4\pi\|x-x_{j}\|}\right)

at the source and target locations $x=x_{j},t_{i}$. When $x=x_{j}$, the term corresponding to $x_{j}$ is dropped from the sum.

Expand Down
Loading

0 comments on commit 3766fef

Please sign in to comment.