Originally forked from the same named repo in github. MacOS supported is added to the repo.
- 1- Download, tflite model and put it in the assets folder
- 2 - Add the path of the tflite model to pubspec.yaml
- 3 - Read the file using path_provider plugin
- 4 - Make a seperate class for accessing the NSFW detector as
class NSFWDetector {
NSFWDetector(this.modelPath, this.enableLog, this.isOpenGPU, this.numThreads);
final String modelPath;
final bool enableLog;
final bool isOpenGPU;
final int numThreads;
bool isInitialized = false;
Future<dynamic> detectInPhoto(String photoPath) async {
if (!isInitialized) {
Directory appDocDir = await getApplicationDocumentsDirectory();
String appDocPath = appDocDir.path;
var file = File(appDocPath + "/nsfw.tflite");
if (!file.existsSync()) {
var data = await rootBundle.load("assets/nsfw.tflite");
final buffer = data.buffer;
await file.writeAsBytes(
buffer.asUint8List(data.offsetInBytes, data.lengthInBytes));
}
await FlutterNsfw.initNsfw(
file.path,
);
isInitialized = true;
}
return FlutterNsfw.getPhotoNSFWScore(photoPath);
}
Future<dynamic> detectVideo(
String videoPath,
double nsfwThreshold,
int width,
int height,
) async {
if (!isInitialized) {
Directory appDocDir = await getApplicationDocumentsDirectory();
String appDocPath = appDocDir.path;
var file = File(appDocPath + "/nsfw.tflite");
if (!file.existsSync()) {
var data = await rootBundle.load("assets/nsfw.tflite");
final buffer = data.buffer;
await file.writeAsBytes(
buffer.asUint8List(data.offsetInBytes, data.lengthInBytes));
}
await FlutterNsfw.initNsfw(
file.path,
);
isInitialized = true;
}
final result = await FlutterNsfw.detectNSFWVideo(
videoPath: videoPath,
nsfwThreshold: nsfwThreshold,
frameWidth: width,
frameHeight: height,
durationPerFrame: 1000);
if (result != null) {
print('the result is true');
return result as bool;
} else {
print('this result is false');
return false;
}
}
}
- 5 - Initiate the instance of the class that you have previously made
NSFWDetector _nsfwDetector =
NSFWDetector('assets/nsfw.tflite', true, true, 2);
- 6 - Make helper method for detecting nsfw photo,
Future<dynamic> detectNSFWImage(String photo) async {
final nsfwStatus = await _nsfwDetector.detectInPhoto(photo);
if (nsfwStatus > 0.80) {
return true;
} else {
return false;
}
}
- 7 - Make helper mothod for detecting NSFW video,
Future<dynamic> detectNSFWVideo(String video, int width, int height) async {
final nsfwStatus =
await _nsfwDetector.detectVideo(video, 0.70, width, height);
return nsfwStatus ?? false;
}
- If you find that the model is increasing your App Size you can also host your model Firebase ML kit and download it using FirebaseMLModelDownloader
- If you are running the example app on emulator so it might not work because of GPU constraints please use a real device especially when testing for Android.