Skip to content
/ LumiNet Public template

A Multi-Modal Feature Fusion Network for 3D Object Detection

License

Notifications You must be signed in to change notification settings

faziii0/LumiNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LumiNet

A Multi-Modal Feature Fusion Network for 3D Object Detection

Code will be available Soon

Environment Setup:

Linux (tested on Ubuntu 22.04)

Python 3.8

PyTorch 1.10 + CUDA-11.3

Installation:

To deploy this project run

git clone https://github.com/faziii0/LumiNet
  
conda create -n liard python==3.8
conda activate liard
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.cudatoolkit=11.3 -c pytorch -c conda-forge
conda install -c conda-forge cudatoolkit-dev
pip install -r requirements.txt
sh build_and_install.sh

Depth Images

We use MiDaS pretrained model to covert image_2 into depth images or download it from here Google. You can clone their repo and run this command

python run.py --model_type dpt_beit_large_512 --input_path image_2 --output_path depth

Dataset preparation:

Please download the official KITTI 3D object detection dataset and train mask from Epnet++

LiARD
├── data
│   ├── KITTI
│   │   ├── ImageSets
│   │   ├── object
│   │   │   ├──training
│   │   │      ├──calib & velodyne & label_2 & image_2 & depth & train_mask
│   │   │   ├──testing
│   │   │      ├──calib & velodyne & image_2 & depth
├── lib
├── pointdep_lirad
├── tools

Trained Model Evaluation

Objects Easy Moderate Hard
Car 91.67% 83.32% 78.29%
Pedestrian 00.0% 00.0% 0.00%
Cyclist 00.0% 00.0% 00.0%

3D Predicted labels are avialable from the above Google

Acknowledgements

Thanks to all the contributors and authors of the project PointRCNN, EPNet++, EPNet,MiDaS

Citation

About

A Multi-Modal Feature Fusion Network for 3D Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published