Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

better repalce_node fn #934

Merged
merged 5 commits into from
Dec 19, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 20 additions & 7 deletions hls4ml/model/graph.py
Original file line number Diff line number Diff line change
Expand Up @@ -577,13 +577,24 @@ def replace_node(self, old_node, new_node):
new_node (Layer): The new node

"""
prev_node = self.graph.get(old_node.inputs[0])
next_node = next((x for x in self.graph.values() if x.inputs[0] == old_node.outputs[0]), None)
if next_node is not None:
next_node.inputs[0] = new_node.outputs[0]
if prev_node is not None:
if new_node.inputs is None or len(new_node.inputs) == 0: # Check if already rewired
new_node.inputs = [prev_node.outputs[0]]

# fmt: off
assert len(new_node.inputs) == len(old_node.inputs), \
f'{new_node.name} and {old_node.name} have different number of inputs'
assert len(new_node.outputs) == len(old_node.outputs), \
f'{new_node.name} and {old_node.name} have different number of outputs'
# fmt: on

repl = {old_name: new_name for old_name, new_name in zip(old_node.outputs, new_node.outputs)}
repl.update({old_name: new_name for old_name, new_name in zip(old_node.inputs, new_node.inputs)})

for node in self.graph.values():
for i, n in enumerate(node.inputs):
if n in repl:
node.inputs[i] = repl[n]
for i, n in enumerate(node.outputs):
if n in repl:
node.outputs[i] = repl[n]

self.graph = OrderedDict((new_node.name, new_node) if k == old_node.name else (k, v) for k, v in self.graph.items())
self._update_model_outputs()
Expand Down Expand Up @@ -648,7 +659,9 @@ def compile(self):
Users should call this function if they want to use `predict` functionality for simulation.
"""
self.write()
self._compile()

def _compile(self):
lib_name = self.config.backend.compile(self)
if self._top_function_lib is not None:
if platform.system() == "Linux":
Expand Down
27 changes: 0 additions & 27 deletions test/pytest/test_repack_precision.py

This file was deleted.

69 changes: 69 additions & 0 deletions test/pytest/test_repack_stream.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
from pathlib import Path

import numpy as np
import pytest
from tensorflow import keras

from hls4ml.converters import convert_from_keras_model

test_root_path = Path(__file__).parent


@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
def test_repack_precision(backend: str):
inp = keras.Input(shape=(3, 3), name='inp')
out = keras.layers.Reshape((3, 3), name='reshape')(inp)
out = keras.layers.Conv1D(2, 2, name='conv')(out)
model = keras.Model(inp, out)

layer_conf = {
'inp': {'Precision': 'fixed<20,10>'},
'reshape': {'Precision': 'fixed<20,10>'},
'conv': {'Precision': 'fixed<20,10>'},
}

hls_config = {'Model': {'Precision': 'fixed<2,1>', 'ReuseFactor': 1}, 'LayerName': layer_conf}

# Repack only happens in io_stream
model_hls = convert_from_keras_model(
model,
backend=backend,
output_dir=str(test_root_path / f'hls4mlprj_repack_precision_{backend}'),
hls_config=hls_config,
io_type='io_stream',
)
model_hls.write() # Not needed for this test, but useful for debugging
assert 'repack_reshape' in model_hls.graph, 'repack_reshape not found in graph'
repack_precision = model_hls.graph['repack_reshape'].attributes['result_t'].precision
assert repack_precision.integer == 10, 'Precision mismatch'
assert repack_precision.fractional == 10, 'Precision mismatch'
assert repack_precision.width == 20, 'Precision mismatch'
assert repack_precision.signed is True, 'Precision mismatch'


@pytest.mark.parametrize('backend', ['Vivado', 'Vitis', 'Quartus'])
@pytest.mark.parametrize('strategy', ['Latency', 'Resource'])
def test_repack(backend: str, strategy: str):
inp1 = keras.Input(shape=(4,), name='inp1')
inp2 = keras.Input(shape=(4,), name='inp2')
r1 = keras.layers.Reshape((2, 2), name='reshape1')(inp1)
r2 = keras.layers.Reshape((2, 2), name='reshape2')(inp2)
out = keras.layers.Concatenate(name='concat')([r1, r2])
model = keras.Model([inp1, inp2], out)

hls_config = {'Model': {'Precision': 'ap_ufixed<8,8>', 'ReuseFactor': 1}, 'Strategy': strategy}
model_hls = convert_from_keras_model(
model,
io_type='io_stream',
backend=backend,
hls_config=hls_config,
output_dir=str(test_root_path / f'hls4mlprj_repack_{backend}_{strategy}'),
)
model_hls.compile()
inp_data = [
np.random.randint(0, 2**8, (100, 4)).astype(np.float32),
np.random.randint(0, 2**8, (100, 4)).astype(np.float32),
]
out_target = np.concatenate([inp_data[0].reshape(100, 2, 2), inp_data[1].reshape(100, 2, 2)], axis=-1)
out_data: np.ndarray = model_hls.predict(inp_data) # type: ignore
assert np.all(out_data.reshape(out_target.shape) == out_target), 'Concatenate failed: mismatching output'
Loading