Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added bucketization feature to IndexLSH. #4048

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions faiss/IndexLSH.h
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,7 @@ struct IndexLSH : IndexFlatCodes {
void sa_encode(idx_t n, const float* x, uint8_t* bytes) const override;

void sa_decode(idx_t n, const uint8_t* bytes, float* x) const override;

};

} // namespace faiss
Expand Down
126 changes: 126 additions & 0 deletions faiss/IndexLSHBuckets.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
#include <faiss/IndexLSHBuckets.h>
#include <faiss/IndexLSH.h>
#include <cstdio>
#include <cstring>

#include <algorithm>
#include <memory>

#include <faiss/impl/FaissAssert.h>
#include <faiss/utils/hamming.h>

namespace faiss {
IndexLSHBuckets::IndexLSHBuckets(idx_t d, int nbits, bool rotate_data, bool train_thresholds)
: IndexFlatCodes((nbits + 7) / 8, d),
nbits(nbits),
rotate_data(rotate_data),
train_thresholds(train_thresholds),
rrot(d, nbits) {
is_trained = !train_thresholds;

if (rotate_data) {
rrot.init(5);
} else {
FAISS_THROW_IF_NOT(d >= nbits);
}

}

const float* IndexLSHBuckets::apply_preprocess(idx_t n, const float* x) const {
float* xt = nullptr;
if (rotate_data) {
// also applies bias if exists
xt = rrot.apply(n, x);
} else if (d != nbits) {
assert(nbits < d);
xt = new float[nbits * n];
float* xp = xt;
for (idx_t i = 0; i < n; i++) {
const float* xl = x + i * d;
for (int j = 0; j < nbits; j++)
*xp++ = xl[j];
}
}

if (train_thresholds) {
if (xt == nullptr) {
xt = new float[nbits * n];
memcpy(xt, x, sizeof(*x) * n * nbits);
}

float* xp = xt;
for (idx_t i = 0; i < n; i++)
for (int j = 0; j < nbits; j++)
*xp++ -= thresholds[j];
}

return xt ? xt : x;
}

void IndexLSHBuckets::train(idx_t n, const float* x) {
if (train_thresholds) {
thresholds.resize(nbits);
train_thresholds = false;
const float* xt = apply_preprocess(n, x);
std::unique_ptr<const float[]> del(xt == x ? nullptr : xt);
train_thresholds = true;

std::unique_ptr<float[]> transposed_x(new float[n * nbits]);

for (idx_t i = 0; i < n; i++)
for (idx_t j = 0; j < nbits; j++)
transposed_x[j * n + i] = xt[i * nbits + j];

for (idx_t i = 0; i < nbits; i++) {
float* xi = transposed_x.get() + i * n;
// std::nth_element
std::sort(xi, xi + n);
if (n % 2 == 1)
thresholds[i] = xi[n / 2];
else
thresholds[i] = (xi[n / 2 - 1] + xi[n / 2]) / 2;
}
}
is_trained = true;
}

/**
* @brief Computes the hash bucket mappings for a set of data points.
*
* This method applies preprocessing to the input data, computes the hash values
* using a Locality-Sensitive Hashing (LSH) approach, and stores the resulting hash
* bucket numbers in a 2D vector. Each data point's hash bucket number is calculated
* based on the hash of its corresponding feature vector.
*
* @param n The number of data points to be processed.
* @param x A pointer to the input feature matrix (a 2D array of floats).
* @param bytes A pointer to an array of bytes where the bit representation of
* the feature vectors will be stored.
* @param bucket_count The number of hash buckets to be used.
* @param bucket_mapping A reference to a 2D vector (std::vector<std::vector<uint64_t>>)
* where the resulting hash bucket mappings will be stored.
* Each row in the vector corresponds to one data point,
* and each entry in a row represents a hash bucket number.
*
* @note This method assumes that the LSH model is already trained. It also assumes
* that the number of buckets is defined by `bucket_count` and that the
* hash codes are computed using a bit representation of the input data.
*/
void IndexLSHBuckets::Hash_code(idx_t n, const float* x, uint8_t* bytes, int bucket_count,std::vector<std::vector<uint64_t>>& bucket_mapping) const {
FAISS_THROW_IF_NOT(is_trained);
const float* xt = apply_preprocess(n, x);
std::unique_ptr<const float[]> del(xt == x ? nullptr : xt);
fvecs2bitvecs(xt, bytes, nbits, n);
for (idx_t i = 0; i < n; ++i) {
uint64_t hash_value = 0;
for (int j = 0; j < nbits / 8; ++j) {
hash_value |= static_cast<uint64_t>(bytes[i * (nbits / 8) + j]) << (8 * j);
}
uint64_t bucket_number = hash_value % bucket_count;

bucket_mapping[i].push_back(bucket_number);
}
}


}
34 changes: 34 additions & 0 deletions faiss/IndexLSHBuckets.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
#ifndef INDEX_LSH_H
#define INDEX_LSH_H

#include <vector>

#include <faiss/IndexFlatCodes.h>
#include <faiss/VectorTransform.h>

namespace faiss {
/** The sign of each vector component is put in a binary signature */
struct IndexLSHBuckets : IndexFlatCodes {

int nbits; ///< nb of bits per vector
bool rotate_data; ///< whether to apply a random rotation to input
bool train_thresholds; ///< whether we train thresholds or use 0

RandomRotationMatrix rrot; ///< optional random rotation

std::vector<float> thresholds; ///< thresholds to compare with

IndexLSHBuckets(
idx_t d,
int nbits,
bool rotate_data = true,
bool train_thresholds = false);

const float* apply_preprocess(idx_t n, const float* x) const;
void train(idx_t n, const float* x) override;

void Hash_code(idx_t n, const float* x, uint8_t* bytes, int bucket_count, std::vector<std::vector<uint64_t>>& bucket_mapping) const;
};
}

#endif
Loading