Skip to content

Commit

Permalink
rational-numbers: Make formulas more readable (#1655)
Browse files Browse the repository at this point in the history
* rational-numbers: Make formulas more readable

* Remove superscript characters

* Readd parentheses
  • Loading branch information
SaschaMann authored Oct 28, 2020
1 parent f95ceef commit b889bf8
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions exercises/rational-numbers/description.md
Original file line number Diff line number Diff line change
Expand Up @@ -2,13 +2,13 @@ A rational number is defined as the quotient of two integers `a` and `b`, called

The absolute value `|r|` of the rational number `r = a/b` is equal to `|a|/|b|`.

The sum of two rational numbers `r1 = a1/b1` and `r2 = a2/b2` is `r1 + r2 = a1/b1 + a2/b2 = (a1 * b2 + a2 * b1) / (b1 * b2)`.
The sum of two rational numbers `r₁ = a₁/b₁` and `r₂ = a₂/b₂` is `r₁ + r₂ = a₁/b₁ + a₂/b₂ = (a₁ * b₂ + a₂ * b₁) / (b₁ * b₂)`.

The difference of two rational numbers `r1 = a1/b1` and `r2 = a2/b2` is `r1 - r2 = a1/b1 - a2/b2 = (a1 * b2 - a2 * b1) / (b1 * b2)`.
The difference of two rational numbers `r₁ = a₁/b₁` and `r₂ = a₂/b₂` is `r₁ - r₂ = a₁/b₁ - a₂/b₂ = (a₁ * b₂ - a₂ * b₁) / (b₁ * b₂)`.

The product (multiplication) of two rational numbers `r1 = a1/b1` and `r2 = a2/b2` is `r1 * r2 = (a1 * a2) / (b1 * b2)`.
The product (multiplication) of two rational numbers `r₁ = a₁/b₁` and `r₂ = a₂/b₂` is `r₁ * r₂ = (a₁ * a₂) / (b₁ * b₂)`.

Dividing a rational number `r1 = a1/b1` by another `r2 = a2/b2` is `r1 / r2 = (a1 * b2) / (a2 * b1)` if `a2 * b1` is not zero.
Dividing a rational number `r₁ = a₁/b₁` by another `r₂ = a₂/b₂` is `r₁ / r₂ = (a₁ * b₂) / (a₂ * b₁)` if `a₂ * b₁` is not zero.

Exponentiation of a rational number `r = a/b` to a non-negative integer power `n` is `r^n = (a^n)/(b^n)`.

Expand Down

0 comments on commit b889bf8

Please sign in to comment.