Skip to content

Commit

Permalink
Sync docs (#294)
Browse files Browse the repository at this point in the history
  • Loading branch information
BNAndras authored Nov 7, 2024
1 parent 9083d0f commit 5b9cfe3
Show file tree
Hide file tree
Showing 9 changed files with 68 additions and 15 deletions.
10 changes: 5 additions & 5 deletions exercises/practice/hamming/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# Instructions

Calculate the Hamming Distance between two DNA strands.
Calculate the Hamming distance between two DNA strands.

Your body is made up of cells that contain DNA.
Those cells regularly wear out and need replacing, which they achieve by dividing into daughter cells.
Expand All @@ -9,18 +9,18 @@ In fact, the average human body experiences about 10 quadrillion cell divisions
When cells divide, their DNA replicates too.
Sometimes during this process mistakes happen and single pieces of DNA get encoded with the incorrect information.
If we compare two strands of DNA and count the differences between them we can see how many mistakes occurred.
This is known as the "Hamming Distance".
This is known as the "Hamming distance".

We read DNA using the letters C,A,G and T.
We read DNA using the letters C, A, G and T.
Two strands might look like this:

GAGCCTACTAACGGGAT
CATCGTAATGACGGCCT
^ ^ ^ ^ ^ ^^

They have 7 differences, and therefore the Hamming Distance is 7.
They have 7 differences, and therefore the Hamming distance is 7.

The Hamming Distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :)
The Hamming distance is useful for lots of things in science, not just biology, so it's a nice phrase to be familiar with :)

## Implementation notes

Expand Down
2 changes: 1 addition & 1 deletion exercises/practice/hamming/.meta/config.json
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
"example/hamming.d"
]
},
"blurb": "Calculate the Hamming difference between two DNA strands.",
"blurb": "Calculate the Hamming distance between two DNA strands.",
"source": "The Calculating Point Mutations problem at Rosalind",
"source_url": "https://rosalind.info/problems/hamm/"
}
3 changes: 2 additions & 1 deletion exercises/practice/luhn/.docs/instructions.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,8 @@ The first step of the Luhn algorithm is to double every second digit, starting f
We will be doubling

```text
4_3_ 3_9_ 0_4_ 6_6_
4539 3195 0343 6467
↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ (double these)
```

If doubling the number results in a number greater than 9 then subtract 9 from the product.
Expand Down
3 changes: 2 additions & 1 deletion exercises/practice/matching-brackets/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# Instructions

Given a string containing brackets `[]`, braces `{}`, parentheses `()`, or any combination thereof, verify that any and all pairs are matched and nested correctly.
The string may also contain other characters, which for the purposes of this exercise should be ignored.
Any other characters should be ignored.
For example, `"{what is (42)}?"` is balanced and `"[text}"` is not.
8 changes: 8 additions & 0 deletions exercises/practice/matching-brackets/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# Introduction

You're given the opportunity to write software for the Bracketeer™, an ancient but powerful mainframe.
The software that runs on it is written in a proprietary language.
Much of its syntax is familiar, but you notice _lots_ of brackets, braces and parentheses.
Despite the Bracketeer™ being powerful, it lacks flexibility.
If the source code has any unbalanced brackets, braces or parentheses, the Bracketeer™ crashes and must be rebooted.
To avoid such a scenario, you start writing code that can verify that brackets, braces, and parentheses are balanced before attempting to run it on the Bracketeer™.
27 changes: 24 additions & 3 deletions exercises/practice/pascals-triangle/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,14 +1,35 @@
# Instructions

Compute Pascal's triangle up to a given number of rows.
Your task is to output the first N rows of Pascal's triangle.

In Pascal's Triangle each number is computed by adding the numbers to the right and left of the current position in the previous row.
[Pascal's triangle][wikipedia] is a triangular array of positive integers.

In Pascal's triangle, the number of values in a row is equal to its row number (which starts at one).
Therefore, the first row has one value, the second row has two values, and so on.

The first (topmost) row has a single value: `1`.
Subsequent rows' values are computed by adding the numbers directly to the right and left of the current position in the previous row.

If the previous row does _not_ have a value to the left or right of the current position (which only happens for the leftmost and rightmost positions), treat that position's value as zero (effectively "ignoring" it in the summation).

## Example

Let's look at the first 5 rows of Pascal's Triangle:

```text
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
# ... etc
```

The topmost row has one value, which is `1`.

The leftmost and rightmost values have only one preceding position to consider, which is the position to its right respectively to its left.
With the topmost value being `1`, it follows from this that all the leftmost and rightmost values are also `1`.

The other values all have two positions to consider.
For example, the fifth row's (`1 4 6 4 1`) middle value is `6`, as the values to its left and right in the preceding row are `3` and `3`:

[wikipedia]: https://en.wikipedia.org/wiki/Pascal%27s_triangle
22 changes: 22 additions & 0 deletions exercises/practice/pascals-triangle/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Introduction

With the weather being great, you're not looking forward to spending an hour in a classroom.
Annoyed, you enter the class room, where you notice a strangely satisfying triangle shape on the blackboard.
Whilst waiting for your math teacher to arrive, you can't help but notice some patterns in the triangle: the outer values are all ones, each subsequent row has one more value than its previous row and the triangle is symmetrical.
Weird!

Not long after you sit down, your teacher enters the room and explains that this triangle is the famous [Pascal's triangle][wikipedia].

Over the next hour, your teacher reveals some amazing things hidden in this triangle:

- It can be used to compute how many ways you can pick K elements from N values.
- It contains the Fibonacci sequence.
- If you color odd and even numbers differently, you get a beautiful pattern called the [Sierpiński triangle][wikipedia-sierpinski-triangle].

The teacher implores you and your classmates to lookup other uses, and assures you that there are lots more!
At that moment, the school bell rings.
You realize that for the past hour, you were completely absorbed in learning about Pascal's triangle.
You quickly grab your laptop from your bag and go outside, ready to enjoy both the sunshine _and_ the wonders of Pascal's triangle.

[wikipedia]: https://en.wikipedia.org/wiki/Pascal%27s_triangle
[wikipedia-sierpinski-triangle]: https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle
6 changes: 3 additions & 3 deletions exercises/practice/rna-transcription/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -1,12 +1,12 @@
# Instructions

Your task is determine the RNA complement of a given DNA sequence.
Your task is to determine the RNA complement of a given DNA sequence.

Both DNA and RNA strands are a sequence of nucleotides.

The four nucleotides found in DNA are adenine (**A**), cytosine (**C**), guanine (**G**) and thymine (**T**).
The four nucleotides found in DNA are adenine (**A**), cytosine (**C**), guanine (**G**), and thymine (**T**).

The four nucleotides found in RNA are adenine (**A**), cytosine (**C**), guanine (**G**) and uracil (**U**).
The four nucleotides found in RNA are adenine (**A**), cytosine (**C**), guanine (**G**), and uracil (**U**).

Given a DNA strand, its transcribed RNA strand is formed by replacing each nucleotide with its complement:

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
In this exercise, you're going to implement a program that determines the state of a [tic-tac-toe][] game.
(_You may also know the game as "noughts and crosses" or "Xs and Os"._)

The games is played on a 3×3 grid.
The game is played on a 3×3 grid.
Players take turns to place `X`s and `O`s on the grid.
The game ends when one player has won by placing three of marks in a row, column, or along a diagonal of the grid, or when the entire grid is filled up.

Expand Down

0 comments on commit 5b9cfe3

Please sign in to comment.