-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'origin/feature/139-add-sacremoses-depen…
…dency' into feature/139-add-sacremoses-dependency
- Loading branch information
Showing
7 changed files
with
214 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -9,7 +9,7 @@ T.B.D | |
|
||
### Features | ||
|
||
- n/a | ||
- #145: Added load function for loading local models | ||
|
||
### Bug Fixes | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
import torch | ||
import transformers.pipelines | ||
from typing import Optional | ||
from pathlib import Path | ||
from exasol_transformers_extension.utils.model_factory_protocol import ModelFactoryProtocol | ||
|
||
|
||
class LoadLocalModel: | ||
""" | ||
Class for loading locally saved models and tokenizers. Also stores information regarding the model and pipeline. | ||
:_pipeline_factory: a function to create a transformers pipeline | ||
:task_name: name of the current task | ||
:device: device to be used for pipeline creation | ||
:_base_model_factory: a ModelFactoryProtocol for creating the loaded model | ||
:_tokenizer_factory: a ModelFactoryProtocol for creating the loaded tokenizer | ||
""" | ||
def __init__(self, | ||
_pipeline_factory, | ||
task_name: str, | ||
device: str, | ||
base_model_factory: ModelFactoryProtocol, | ||
tokenizer_factory: ModelFactoryProtocol | ||
): | ||
self.pipeline_factory = _pipeline_factory | ||
self.task_name = task_name | ||
self.device = device | ||
self._base_model_factory = base_model_factory | ||
self._tokenizer_factory = tokenizer_factory | ||
self._loaded_model_key = None | ||
|
||
@property | ||
def loaded_model_key(self): | ||
"""Get the current loaded_model_key.""" | ||
return self._loaded_model_key | ||
|
||
def load_models(self, | ||
model_path: Path, | ||
current_model_key: str | ||
) -> transformers.pipelines.Pipeline: | ||
""" | ||
Loads a locally saved model and tokenizer from "cache_dir / "pretrained" / model_name". | ||
Returns new pipeline corresponding to the model and task. | ||
:model_path: location of the saved model and tokenizer | ||
:current_model_key: key of the model to be loaded | ||
""" | ||
|
||
loaded_model = self._base_model_factory.from_pretrained(str(model_path)) | ||
loaded_tokenizer = self._tokenizer_factory.from_pretrained(str(model_path)) | ||
|
||
last_created_pipeline = self.pipeline_factory( | ||
self.task_name, | ||
model=loaded_model, | ||
tokenizer=loaded_tokenizer, | ||
device=self.device, | ||
framework="pt") | ||
self._loaded_model_key = current_model_key | ||
return last_created_pipeline | ||
|
||
def clear_device_memory(self): | ||
""" | ||
Delete models and free device memory | ||
""" | ||
torch.cuda.empty_cache() | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
83 changes: 83 additions & 0 deletions
83
tests/integration_tests/without_db/utils/test_load_local_model.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,83 @@ | ||
from pathlib import Path, PurePosixPath | ||
from transformers import AutoModel, AutoTokenizer, pipeline | ||
import tarfile | ||
|
||
from exasol_transformers_extension.utils.load_local_model import LoadLocalModel | ||
from exasol_transformers_extension.utils.model_factory_protocol import ModelFactoryProtocol | ||
from exasol_transformers_extension.utils.huggingface_hub_bucketfs_model_transfer_sp import \ | ||
HuggingFaceHubBucketFSModelTransferSPFactory | ||
from exasol_bucketfs_utils_python.localfs_mock_bucketfs_location import \ | ||
LocalFSMockBucketFSLocation | ||
|
||
from tests.utils.parameters import model_params | ||
|
||
import tempfile | ||
|
||
|
||
class TestSetup: | ||
def __init__(self): | ||
|
||
self.base_model_factory: ModelFactoryProtocol = AutoModel | ||
self.tokenizer_factory: ModelFactoryProtocol = AutoTokenizer | ||
|
||
self.token = "token" | ||
model_params_ = model_params.tiny_model | ||
self.model_name = model_params_ | ||
|
||
self.mock_current_model_key = None | ||
test_pipeline = pipeline | ||
self.loader = LoadLocalModel( | ||
test_pipeline, | ||
task_name="token-classification", | ||
device="cpu", | ||
base_model_factory=self.base_model_factory, | ||
tokenizer_factory=self.tokenizer_factory | ||
) | ||
|
||
|
||
def download_model_with_huggingface_transfer(test_setup, mock_bucketfs_location): | ||
model_transfer_factory = HuggingFaceHubBucketFSModelTransferSPFactory() | ||
downloader = model_transfer_factory.create(bucketfs_location=mock_bucketfs_location, | ||
model_name=test_setup.model_name, | ||
model_path=Path("cached_files"), | ||
token="") | ||
downloader.download_from_huggingface_hub(test_setup.base_model_factory) | ||
downloader.download_from_huggingface_hub(test_setup.tokenizer_factory) | ||
bucketfs_model_path = downloader.upload_to_bucketfs() | ||
|
||
with tarfile.open(mock_bucketfs_location.base_path / bucketfs_model_path) as tar: | ||
tar.extractall(path=mock_bucketfs_location.base_path / bucketfs_model_path.parent) | ||
return mock_bucketfs_location.base_path / bucketfs_model_path.parent | ||
|
||
|
||
def test_load_local_model(): | ||
test_setup = TestSetup() | ||
|
||
with tempfile.TemporaryDirectory() as dir: | ||
dir_p = Path(dir) | ||
model_save_path = dir_p / "pretrained" / test_setup.model_name | ||
# download a model | ||
model = AutoModel.from_pretrained(test_setup.model_name) | ||
tokenizer = AutoTokenizer.from_pretrained(test_setup.model_name) | ||
model.save_pretrained(model_save_path) | ||
tokenizer.save_pretrained(model_save_path) | ||
|
||
test_setup.loader.load_models(current_model_key=test_setup.mock_current_model_key, | ||
model_path=dir_p / "pretrained" / test_setup.model_name) | ||
|
||
|
||
def test_load_local_model_with_huggingface_model_transfer(): | ||
test_setup = TestSetup() | ||
|
||
with tempfile.TemporaryDirectory() as dire: | ||
dir_p = Path(dire) | ||
|
||
mock_bucketfs_location = LocalFSMockBucketFSLocation( | ||
PurePosixPath(dir_p / "bucket")) | ||
|
||
# download a model | ||
downloaded_model_path = download_model_with_huggingface_transfer( | ||
test_setup, mock_bucketfs_location) | ||
|
||
test_setup.loader.load_models(current_model_key=test_setup.mock_current_model_key, | ||
model_path=downloaded_model_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
import tempfile | ||
from pathlib import Path | ||
from typing import Union | ||
from unittest.mock import create_autospec, MagicMock, call, Mock | ||
|
||
import transformers | ||
|
||
from exasol_transformers_extension.utils.model_factory_protocol import ModelFactoryProtocol | ||
from exasol_transformers_extension.utils.load_local_model import LoadLocalModel | ||
from tests.unit_tests.udf_wrapper_params.zero_shot.mock_zero_shot import MockPipeline | ||
from tests.utils.mock_cast import mock_cast | ||
|
||
|
||
class TestSetup: | ||
def __init__(self): | ||
|
||
self.model_factory_mock: Union[ModelFactoryProtocol, MagicMock] = create_autospec(ModelFactoryProtocol) | ||
self.tokenizer_factory_mock: Union[ModelFactoryProtocol, MagicMock] = create_autospec(ModelFactoryProtocol) | ||
self.token = "token" | ||
self.model_name = "model_name" | ||
self.mock_current_model_key = "some_key" | ||
self.cache_dir = "test/Path" | ||
|
||
self.mock_pipeline = Mock() | ||
self.loader = LoadLocalModel( | ||
self.mock_pipeline, | ||
task_name="test_task", | ||
device="cpu", | ||
base_model_factory=self.model_factory_mock, | ||
tokenizer_factory=self.tokenizer_factory_mock) | ||
|
||
|
||
def test_load_function_call(): | ||
test_setup = TestSetup() | ||
model_save_path = Path(test_setup.cache_dir) / "pretrained" / test_setup.model_name | ||
|
||
test_setup.loader.load_models(current_model_key=test_setup.mock_current_model_key, | ||
model_path=model_save_path) | ||
|
||
assert test_setup.model_factory_mock.mock_calls == [ | ||
call.from_pretrained(str(model_save_path))] | ||
assert test_setup.tokenizer_factory_mock.mock_calls == [ | ||
call.from_pretrained(str(model_save_path))] | ||
assert test_setup.mock_pipeline.mock_calls == [ | ||
call('test_task', | ||
model=mock_cast(test_setup.model_factory_mock.from_pretrained).return_value, | ||
tokenizer=mock_cast(test_setup.tokenizer_factory_mock.from_pretrained).return_value, | ||
device='cpu', framework='pt')] | ||
|