Utilities for working with the FlatBuffers schemas used at the European Spallation Source ERIC for data transport.
https://github.com/ess-dmsc/streaming-data-types
name | description |
---|---|
hs00 | Histogram schema (deprecated in favour of hs01) |
hs01 | Histogram schema |
ns10 | NICOS cache entry schema |
pl72 | Run start |
6s4t | Run stop |
f142 | Log data (deprecated in favour of f144) |
f144 | Log data |
ev42 | Event data (deprecated in favour of ev44) |
ev43 | Event data from multiple pulses |
ev44 | Event data with signed data types |
an44 | ev44 with ANSTO specific changes |
x5f2 | Status messages |
tdct | Timestamps |
ep00 | EPICS connection info (deprecated in favour of ep01) |
ep01 | EPICS connection info |
rf5k | Forwarder configuration update (deprecated in favour of fc00) |
fc00 | Forwarder configuration update |
answ | File-writer command response |
wrdn | File-writer finished writing |
NDAr | Deprecated |
ADAr | EPICS areaDetector data |
al00 | Alarm/status messages used by the Forwarder and NICOS |
senv | Deprecated |
json | Generic JSON data |
se00 | Arrays with optional timestamps, for example waveform data. Replaces senv. |
da00 | Scipp-like data arrays, for histograms, etc. |
Schema for histogram data. It is one of the more complicated to use schemas. It takes a Python dictionary as its input; this dictionary needs to have correctly named fields.
The input histogram data for serialisation and the output deserialisation data have the same dictionary "layout". Example for a 2-D histogram:
hist = {
"source": "some_source",
"timestamp": 123456,
"current_shape": [2, 5],
"dim_metadata": [
{
"length": 2,
"unit": "a",
"label": "x",
"bin_boundaries": np.array([10, 11, 12]),
},
{
"length": 5,
"unit": "b",
"label": "y",
"bin_boundaries": np.array([0, 1, 2, 3, 4, 5]),
},
],
"last_metadata_timestamp": 123456,
"data": np.array([[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]),
"errors": np.array([[5, 4, 3, 2, 1], [10, 9, 8, 7, 6]]),
"info": "info_string",
}
The arrays passed in for data
, errors
and bin_boundaries
can be NumPy arrays
or regular lists, but on deserialisation they will be NumPy arrays.
See README_DEV.md