Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1304_100)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 100 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	7.54880602472e-11
    Mean:	321.811491787
    Std:	149.497795999
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	37.3080754035
    Std:	62.1970431333
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.000418741766225
    Mean:	0.00408167131487
    Std:	0.00397321528762
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	2.50111042988e-13
    Std:	4.06102369641e-13
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	1.027729013e-10
    Mean:	2.55098029811e-08
    Std:	4.54618285269e-08
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0148846875791
    Mean:	311.943741493
    Std:	157.176618944
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	1.08503882075e-05
    Mean:	4.22377737823e-05
    Std:	1.23880563967e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	1.26712540211
    Mean:	326.44794538
    Std:	160.888156007
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	1112.15970202
    Mean:	1889.17565138
    Std:	186.698317457
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.000526080541931
    Mean:	36.8042855342
    Std:	51.4975625779
Testing problem: Rastrigin, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	1.77998221318e-06
    Mean:	3.30978722791
    Std:	1.32303914191
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.378601807452
    Std:	0.648875648102
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	1.66837658038
    Mean:	4.84145344636
    Std:	1.11337767634
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	1.37845290737e-14
    Std:	2.15944213018e-14
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.0
    Std:	0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.042757974748
    Mean:	4.79070223931
    Std:	2.03048248735
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	1.92109023089e-06
    Mean:	6.96772759973e-06
    Std:	1.93749262297e-06
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.0329712858183
    Mean:	0.317640058696
    Std:	0.20085197689
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	0.0
    Mean:	1.71630437349
    Std:	1.29320757925
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	6.06849579299e-06
    Mean:	0.00465416322366
    Std:	0.0182404228338
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00388205920609
    Mean:	2.68586866182
    Std:	1.67491154206
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	4.63994440731
    Mean:	6.96597676491
    Std:	0.652696338474
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.383225422912
    Mean:	1.01731516142
    Std:	0.286915426523
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.000634143935541
    Mean:	2.26227800873
    Std:	1.22300025615
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	3.82497190988
    Mean:	5.37786392818
    Std:	0.352769779198
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.013993005063
    Mean:	1.23992841989
    Std:	1.90675451222
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	6.27658147253
    Mean:	7.76823112234
    Std:	4.2408617265
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	4.62596461078
    Mean:	34.9602836763
    Std:	30.2789469411
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	2.40023256365e-28
    Mean:	8.40778244954e-28
    Std:	2.8636272212e-28
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.119080278201
    Mean:	0.593415829342
    Std:	0.296528735041
Testing problem: Ackley, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	2.30845604854e-08
    Mean:	1.47291553851e-07
    Std:	7.6814647671e-08
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	4.4408920985e-16
    Mean:	3.92574861507e-15
    Std:	4.97379915032e-16
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.000180255719315
    Mean:	0.000409887004384
    Std:	9.53969182846e-05
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	3.05892644548e-10
    Mean:	7.98013601866e-10
    Std:	3.038410091e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	3.99680288865e-15
    Mean:	9.57545154279e-13
    Std:	2.55873505507e-12
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0268173810491
    Mean:	0.0788605303661
    Std:	0.0233144996014
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.000599326779988
    Mean:	0.00103274669599
    Std:	0.000153789968445
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.0652957216633
    Mean:	0.29796835903
    Std:	0.122480051694
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	3.99680288865e-15
    Mean:	7.86926079854e-15
    Std:	1.22410965396e-14
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	5.58761520755e-05
    Mean:	0.000408125203223
    Std:	0.000187188488298
Testing problem: Griewank, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	5.01239161288e-10
    Mean:	0.0252894176635
    Std:	0.0129794353712
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.0064363301188
    Std:	0.0085479159542
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.0891237899173
    Mean:	0.195186789825
    Std:	0.0401196786661
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.0625692527e-10
    Mean:	0.000341176168633
    Std:	0.000518352807703
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	7.97452937018e-12
    Std:	9.3496263471e-11
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.109359663285
    Mean:	0.354370479669
    Std:	0.142393526688
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	3.58120801203e-05
    Mean:	0.00297524468054
    Std:	0.00479545008211
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.263204096665
    Mean:	0.764165024744
    Std:	0.237084901777
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	0.0
    Mean:	3.69802016708e-05
    Std:	0.000521669941442
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	3.2908365194e-06
    Mean:	0.00522957782791
    Std:	0.00606297404863
Testing problem: Levy5, Dimension: 10
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-4379.89809629
    Mean:	-4057.76370448
    Std:	213.672935726
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-4411.52297573
    Mean:	-4359.33483418
    Std:	56.9223085428
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-3619.50819751
    Mean:	-2859.02610268
    Std:	251.33429022
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4411.51416289
    Mean:	-4392.98901524
    Std:	19.0358065612
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4405.309108
    Mean:	-4360.54913116
    Std:	30.7026096825
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-4237.66634321
    Mean:	-3554.13402897
    Std:	391.693292649
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-4411.49665345
    Mean:	-4397.66257815
    Std:	78.2532028293
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-4271.03047841
    Mean:	-3782.84949098
    Std:	387.348338872
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-4411.52297573
    Mean:	-3847.70505637
    Std:	427.553784645
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-4347.99007423
    Mean:	-4209.96103867
    Std:	67.6308511784
Testing problem: Cassini 1, Dimension: 6
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	4.98904851392
    Mean:	8.81716697781
    Std:	2.81740974604
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	4.93070825012
    Mean:	10.7052506089
    Std:	3.32738947635
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	5.02894408973
    Mean:	5.50062754835
    Std:	1.04821230501
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.3042865681
    Mean:	5.91197690894
    Std:	1.41976886211
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.57386291515
    Mean:	7.08391864362
    Std:	1.25395149253
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	5.03895955159
    Mean:	16.7061219557
    Std:	7.66808931924
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	5.32330728708
    Mean:	6.23305778799
    Std:	2.41172056656
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	5.40277958837
    Mean:	15.3051027145
    Std:	5.16799744722
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	10.9964850603
    Mean:	16.027073343
    Std:	1.61659361052
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	5.81329252665
    Mean:	9.62162069735
    Std:	2.16573822545
Testing problem: GTOC_1, Dimension: 8
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-1218968.05782
    Mean:	-760814.358401
    Std:	158665.298332
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-1308920.43964
    Mean:	-915583.206374
    Std:	191488.223884
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-788989.155759
    Mean:	-425992.996058
    Std:	111548.534188
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-923837.669852
    Mean:	-587638.95312
    Std:	132721.805642
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-1045458.1968
    Mean:	-615378.561249
    Std:	122086.711347
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-912415.88758
    Mean:	-99071.1875081
    Std:	159303.567959
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-1187011.38853
    Mean:	-835837.927844
    Std:	152665.945813
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-991352.185504
    Mean:	-216331.129976
    Std:	248721.522081
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-1201387.32605
    Mean:	-222300.543779
    Std:	235466.115623
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-1083710.64133
    Mean:	-539365.360971
    Std:	173309.582008
Testing problem: Cassini 2, Dimension: 22
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	9.7072618976
    Mean:	18.6795794708
    Std:	2.64419385963
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	16.4703921367
    Mean:	22.4954309474
    Std:	1.68953849355
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	18.8317599859
    Mean:	26.5027962411
    Std:	2.13596131866
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	13.9611210261
    Mean:	22.1153377942
    Std:	2.46432928774
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	13.5935593734
    Mean:	20.9072173672
    Std:	2.3410971827
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	9.01890904161
    Mean:	22.1949428202
    Std:	6.18338697426
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	14.0160355756
    Mean:	23.9410804868
    Std:	3.30083444113
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	14.2339738917
    Mean:	25.449566762
    Std:	4.07214128516
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	14.8348589529
    Mean:	19.616525472
    Std:	1.78651184683
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	14.4483028843
    Mean:	22.5065778663
    Std:	2.73996273398
Testing problem: Messenger full, Dimension: 26
With Population Size: 100
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	10.3413049859
    Mean:	16.3241530322
    Std:	1.92570302936
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	11.1142468589
    Mean:	15.9999126575
    Std:	1.49283649973
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	17.8616908047
    Mean:	25.9924840238
    Std:	2.59887816227
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	13.8098133623
    Mean:	22.5357613811
    Std:	2.3148942044
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	13.8193723964
    Mean:	20.7188900446
    Std:	2.46361692974
    Algorithm name: Simulated Annealing (Corana's) - iter:50000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	6.3748101942
    Mean:	19.0828998462
    Std:	5.74275248114
    Algorithm name: Improved Harmony Search - iter:50000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	17.070583064
    Mean:	20.8610445792
    Std:	2.10876688025
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	12.1958101219
    Mean:	22.275315374
    Std:	4.72618718906
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	11.8242214841
    Mean:	14.7380528846
    Std:	1.4143941991
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	16.941070582
    Mean:	24.4110181658
 Std:	3.09883252725
Clone this wiki locally