Skip to content

Latest commit

 

History

History
57 lines (43 loc) · 1.92 KB

README.md

File metadata and controls

57 lines (43 loc) · 1.92 KB

Vision Transformers for High-Resolution Canopy Height Mapping

tbd

Available Models

Model Architecture Params
vit-nano Vision Transformer + ConvNet 3.049.665
vit-micro Vision Transformer + ConvNet 6.576.777
vit-tiny Vision Transformer + ConvNet 14.518.713
vit-small Vision Transformer + ConvNet 25.563.369
unet U-Net 10.103.933
unet++ U-Net++ 10.479.187

Training Data

  • 2693 multispectral PlanetScope satellite images (4096x4096x4, ~650 GB)
  • 4 channels per image (R, G, B, NIR)
  • 505.724 patches (256x256) after preprocessing
  • 16.933.743 GEDI labels after preprocessing

Install

To install the required packages to a virtual environment and activate it, run:

python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
cp .env.sample .env

For merging the output files into one, you need to install GDAL:

brew install gdal

Usage

python [preprocessing|train|evaluate|run].py

Inference

python run.py

cd output

ls *.tif > merge_list.txt

gdal_merge.py -o output.tif --optfile merge_list.txt -co COMPRESS=LZW -co BIGTIFF=YES -n 0 -a_nodata 0

References

  1. Vision Transformers for Dense Prediction, DPT

  2. The overlooked contribution of trees outside forests to tree cover and woody biomass across Europe, planet_canopy_height_v0