Skip to content

Commit

Permalink
Add support for VoyageAI embeddings API
Browse files Browse the repository at this point in the history
Added support for environment variables:
- USE_VOYAGEAI_EMBEDDING
- VOYAGEAI_API_KEY
- VOYAGEAI_EMBEDDING_DIMENSIONS
- VOYAGEAI_EMBEDDING_MODEL
Configuration follows existing patterns. Values for dimensions and model
can be found in the VoyageAI API documentation.

Some minor cleanup of the embedding.ts file.

Added unit tests around embedding configuration.
  • Loading branch information
Firbydude committed Dec 25, 2024
1 parent 49aa5d9 commit 9295bde
Show file tree
Hide file tree
Showing 4 changed files with 337 additions and 120 deletions.
6 changes: 6 additions & 0 deletions .env.example
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,12 @@ SMALL_ANTHROPIC_MODEL= # Default: claude-3-haiku-20240307
MEDIUM_ANTHROPIC_MODEL= # Default: claude-3-5-sonnet-20241022
LARGE_ANTHROPIC_MODEL= # Default: claude-3-5-sonnet-20241022

# VoyageAI Configuration
VOYAGEAI_API_KEY=
USE_VOYAGEAI_EMBEDDING= # Set to TRUE for VoyageAI, leave blank for local
VOYAGEAI_EMBEDDING_MODEL= # Default: voyage-3-lite
VOYAGEAI_EMBEDDING_DIMENSIONS= # Default: 512

# Heurist Configuration
HEURIST_API_KEY= # Get from https://heurist.ai/dev-access
SMALL_HEURIST_MODEL= # Default: meta-llama/llama-3-70b-instruct
Expand Down
193 changes: 73 additions & 120 deletions packages/core/src/embedding.ts
Original file line number Diff line number Diff line change
@@ -1,24 +1,16 @@
import path from "node:path";
import { models } from "./models.ts";
import { IAgentRuntime, ModelProviderName } from "./types.ts";
import { IAgentRuntime } from "./types.ts";
import settings from "./settings.ts";
import elizaLogger from "./logger.ts";

interface EmbeddingOptions {
model: string;
endpoint: string;
apiKey?: string;
length?: number;
isOllama?: boolean;
dimensions?: number;
provider?: string;
}
import { getVoyageAIEmbeddingConfig } from "./voyageai.ts";

export const EmbeddingProvider = {
OpenAI: "OpenAI",
Ollama: "Ollama",
GaiaNet: "GaiaNet",
BGE: "BGE",
VoyageAI: "VoyageAI",
} as const;

export type EmbeddingProvider =
Expand All @@ -29,52 +21,82 @@ export namespace EmbeddingProvider {
export type Ollama = typeof EmbeddingProvider.Ollama;
export type GaiaNet = typeof EmbeddingProvider.GaiaNet;
export type BGE = typeof EmbeddingProvider.BGE;
export type VoyageAI = typeof EmbeddingProvider.VoyageAI;
}

export type EmbeddingConfig = {
readonly dimensions: number;
readonly model: string;
readonly provider: EmbeddingProvider;
readonly endpoint?: string;
readonly apiKey?: string;
readonly maxInputTokens?: number;
};

export const getEmbeddingConfig = (): EmbeddingConfig => ({
dimensions:
settings.USE_OPENAI_EMBEDDING?.toLowerCase() === "true"
? 1536 // OpenAI
: settings.USE_OLLAMA_EMBEDDING?.toLowerCase() === "true"
? 1024 // Ollama mxbai-embed-large
: settings.USE_GAIANET_EMBEDDING?.toLowerCase() === "true"
? 768 // GaiaNet
: 384, // BGE
model:
settings.USE_OPENAI_EMBEDDING?.toLowerCase() === "true"
? "text-embedding-3-small"
: settings.USE_OLLAMA_EMBEDDING?.toLowerCase() === "true"
? settings.OLLAMA_EMBEDDING_MODEL || "mxbai-embed-large"
: settings.USE_GAIANET_EMBEDDING?.toLowerCase() === "true"
? settings.GAIANET_EMBEDDING_MODEL || "nomic-embed"
: "BGE-small-en-v1.5",
provider:
settings.USE_OPENAI_EMBEDDING?.toLowerCase() === "true"
? "OpenAI"
: settings.USE_OLLAMA_EMBEDDING?.toLowerCase() === "true"
? "Ollama"
: settings.USE_GAIANET_EMBEDDING?.toLowerCase() === "true"
? "GaiaNet"
: "BGE",
});
// Get embedding config based on settings
export function getEmbeddingConfig(): EmbeddingConfig {
if (settings.USE_OPENAI_EMBEDDING?.toLowerCase() === "true") {
return {
dimensions: 1536,
model: "text-embedding-3-small",
provider: "OpenAI",
endpoint: "https://api.openai.com/v1",
apiKey: settings.OPENAI_API_KEY,
maxInputTokens: 1000000,
};
}
if (settings.USE_OLLAMA_EMBEDDING?.toLowerCase() === "true") {
return {
dimensions: 1024,
model: settings.OLLAMA_EMBEDDING_MODEL || "mxbai-embed-large",
provider: "Ollama",
endpoint: "https://ollama.eliza.ai/",
apiKey: settings.OLLAMA_API_KEY,
maxInputTokens: 1000000,
};
}
if (settings.USE_GAIANET_EMBEDDING?.toLowerCase() === "true") {
return {
dimensions: 768,
model: settings.GAIANET_EMBEDDING_MODEL || "nomic-embed",
provider: "GaiaNet",
endpoint: settings.SMALL_GAIANET_SERVER_URL || settings.MEDIUM_GAIANET_SERVER_URL || settings.LARGE_GAIANET_SERVER_URL,
apiKey: settings.GAIANET_API_KEY,
maxInputTokens: 1000000,
};
}
if (settings.USE_VOYAGEAI_EMBEDDING?.toLowerCase() === "true") {
return getVoyageAIEmbeddingConfig();
}

// Fallback to local BGE
return {
dimensions: 384,
model: "BGE-small-en-v1.5",
provider: "BGE",
maxInputTokens: 1000000,
};
};

async function getRemoteEmbedding(
input: string,
options: EmbeddingOptions
options: EmbeddingConfig
): Promise<number[]> {
// Ensure endpoint ends with /v1 for OpenAI
const baseEndpoint = options.endpoint.endsWith("/v1")
? options.endpoint
: `${options.endpoint}${options.isOllama ? "/v1" : ""}`;
elizaLogger.debug("Getting remote embedding using provider:", options.provider);

// Construct full URL
const fullUrl = `${baseEndpoint}/embeddings`;
const fullUrl = `${options.endpoint}/embeddings`;

// jank. voyageai is the only one that doesn't use "dimensions".
const body = options.provider === "VoyageAI" ? {
input,
model: options.model,
output_dimension: options.dimensions,
} : {
input,
model: options.model,
dimensions: options.dimensions,
};

const requestOptions = {
method: "POST",
Expand All @@ -86,14 +108,7 @@ async function getRemoteEmbedding(
}
: {}),
},
body: JSON.stringify({
input,
model: options.model,
dimensions:
options.dimensions ||
options.length ||
getEmbeddingConfig().dimensions, // Prefer dimensions, fallback to length
}),
body: JSON.stringify(body),
};

try {
Expand All @@ -118,52 +133,19 @@ async function getRemoteEmbedding(
}
}

export function getEmbeddingType(runtime: IAgentRuntime): "local" | "remote" {
const isNode =
typeof process !== "undefined" &&
process.versions != null &&
process.versions.node != null;

// Use local embedding if:
// - Running in Node.js
// - Not using OpenAI provider
// - Not forcing OpenAI embeddings
const isLocal =
isNode &&
runtime.character.modelProvider !== ModelProviderName.OPENAI &&
runtime.character.modelProvider !== ModelProviderName.GAIANET &&
!settings.USE_OPENAI_EMBEDDING;

return isLocal ? "local" : "remote";
}

export function getEmbeddingZeroVector(): number[] {
let embeddingDimension = 384; // Default BGE dimension

if (settings.USE_OPENAI_EMBEDDING?.toLowerCase() === "true") {
embeddingDimension = 1536; // OpenAI dimension
} else if (settings.USE_OLLAMA_EMBEDDING?.toLowerCase() === "true") {
embeddingDimension = 1024; // Ollama mxbai-embed-large dimension
}

return Array(embeddingDimension).fill(0);
// Default BGE dimension is 384
return Array(getEmbeddingConfig().dimensions).fill(0);
}

/**
* Gets embeddings from a remote API endpoint. Falls back to local BGE/384
*
* @param {string} input - The text to generate embeddings for
* @param {EmbeddingOptions} options - Configuration options including:
* - model: The model name to use
* - endpoint: Base API endpoint URL
* - apiKey: Optional API key for authentication
* - isOllama: Whether this is an Ollama endpoint
* - dimensions: Desired embedding dimensions
* @param {IAgentRuntime} runtime - The agent runtime context
* @returns {Promise<number[]>} Array of embedding values
* @throws {Error} If the API request fails
* @throws {Error} If the API request fails or configuration is invalid
*/

export async function embed(runtime: IAgentRuntime, input: string) {
elizaLogger.debug("Embedding request:", {
modelProvider: runtime.character.modelProvider,
Expand Down Expand Up @@ -192,39 +174,9 @@ export async function embed(runtime: IAgentRuntime, input: string) {
const config = getEmbeddingConfig();
const isNode = typeof process !== "undefined" && process.versions?.node;

// Determine which embedding path to use
if (config.provider === EmbeddingProvider.OpenAI) {
return await getRemoteEmbedding(input, {
model: config.model,
endpoint: "https://api.openai.com/v1",
apiKey: settings.OPENAI_API_KEY,
dimensions: config.dimensions,
});
}

if (config.provider === EmbeddingProvider.Ollama) {
return await getRemoteEmbedding(input, {
model: config.model,
endpoint:
runtime.character.modelEndpointOverride ||
models[ModelProviderName.OLLAMA].endpoint,
isOllama: true,
dimensions: config.dimensions,
});
}

if (config.provider == EmbeddingProvider.GaiaNet) {
return await getRemoteEmbedding(input, {
model: config.model,
endpoint:
runtime.character.modelEndpointOverride ||
models[ModelProviderName.GAIANET].endpoint ||
settings.SMALL_GAIANET_SERVER_URL ||
settings.MEDIUM_GAIANET_SERVER_URL ||
settings.LARGE_GAIANET_SERVER_URL,
apiKey: settings.GAIANET_API_KEY || runtime.token,
dimensions: config.dimensions,
});
// Attempt remote embedding if it is configured.
if (config.provider !== EmbeddingProvider.BGE) {
return await getRemoteEmbedding(input, config);
}

// BGE - try local first if in Node
Expand All @@ -247,6 +199,7 @@ export async function embed(runtime: IAgentRuntime, input: string) {
models[runtime.character.modelProvider].endpoint,
apiKey: runtime.token,
dimensions: config.dimensions,
provider: config.provider,
});

async function getLocalEmbedding(input: string): Promise<number[]> {
Expand Down
102 changes: 102 additions & 0 deletions packages/core/src/tests/embeddings.test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,102 @@

import { describe, expect, vi } from "vitest";
import { getEmbeddingConfig } from '../embedding';
import settings from '../settings';

vi.mock("../settings");
const mockedSettings = vi.mocked(settings);

describe('getEmbeddingConfig', () => {
beforeEach(() => {
// Clear the specific mock
Object.keys(mockedSettings).forEach(key => {
delete mockedSettings[key];
});

vi.clearAllMocks();
});

afterEach(() => {
vi.clearAllMocks();
});

it('should return BGE config by default', () => {

mockedSettings.USE_OPENAI_EMBEDDING = 'false';
mockedSettings.USE_OLLAMA_EMBEDDING = 'false';
mockedSettings.USE_GAIANET_EMBEDDING = 'false';
mockedSettings.USE_VOYAGEAI_EMBEDDING = 'false';

const config = getEmbeddingConfig();
expect(config).toEqual({
dimensions: 384,
model: 'BGE-small-en-v1.5',
provider: 'BGE',
maxInputTokens: 1000000,
});
});

it('should return GaiaNet config when USE_GAIANET_EMBEDDING is true', () => {
mockedSettings.USE_GAIANET_EMBEDDING = 'true';
mockedSettings.GAIANET_EMBEDDING_MODEL = 'test-model';
mockedSettings.GAIANET_API_KEY = 'test-key';
mockedSettings.SMALL_GAIANET_SERVER_URL = 'https://test.gaianet.ai';

const config = getEmbeddingConfig();
expect(config).toEqual({
dimensions: 768,
model: 'test-model',
provider: 'GaiaNet',
endpoint: 'https://test.gaianet.ai',
apiKey: 'test-key',
maxInputTokens: 1000000,
});
});


it('should return VoyageAI config when USE_VOYAGEAI_EMBEDDING is true', () => {
mockedSettings.USE_VOYAGEAI_EMBEDDING = 'true';
mockedSettings.VOYAGEAI_API_KEY = 'test-key';

const config = getEmbeddingConfig();
expect(config).toEqual({
dimensions: 512,
model: 'voyage-3-lite',
provider: 'VoyageAI',
endpoint: 'https://api.voyageai.com/v1',
apiKey: 'test-key',
maxInputTokens: 1000000,
});
});

it('should return OpenAI config when USE_OPENAI_EMBEDDING is true', () => {
mockedSettings.USE_OPENAI_EMBEDDING = 'true';
mockedSettings.OPENAI_API_KEY = 'test-key';

const config = getEmbeddingConfig();
expect(config).toEqual({
dimensions: 1536,
model: 'text-embedding-3-small',
provider: 'OpenAI',
endpoint: 'https://api.openai.com/v1',
apiKey: 'test-key',
maxInputTokens: 1000000,
});
});

it('should return Ollama config when USE_OLLAMA_EMBEDDING is true', () => {
mockedSettings.USE_OLLAMA_EMBEDDING = 'true';
mockedSettings.OLLAMA_EMBEDDING_MODEL = 'test-model';
mockedSettings.OLLAMA_API_KEY = 'test-key';

const config = getEmbeddingConfig();
expect(config).toEqual({
dimensions: 1024,
model: 'test-model',
provider: 'Ollama',
endpoint: 'https://ollama.eliza.ai/v1',
apiKey: 'test-key',
maxInputTokens: 1000000,
});
});
});
Loading

0 comments on commit 9295bde

Please sign in to comment.