-
Notifications
You must be signed in to change notification settings - Fork 8.3k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[ML] API Integration tests: adds test for Data Frame Analytics evalua…
…te endpoint (#97856) * wip: add api test for evaluate endpoint * Add api test for evaluate endpoint * add tests for view only and unauthorized user Co-authored-by: Kibana Machine <[email protected]>
- Loading branch information
1 parent
ec8ff3a
commit d6e0251
Showing
2 changed files
with
189 additions
and
0 deletions.
There are no files selected for viewing
188 changes: 188 additions & 0 deletions
188
x-pack/test/api_integration/apis/ml/data_frame_analytics/evaluate.ts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
/* | ||
* Copyright Elasticsearch B.V. and/or licensed to Elasticsearch B.V. under one | ||
* or more contributor license agreements. Licensed under the Elastic License | ||
* 2.0; you may not use this file except in compliance with the Elastic License | ||
* 2.0. | ||
*/ | ||
|
||
import expect from '@kbn/expect'; | ||
import { FtrProviderContext } from '../../../ftr_provider_context'; | ||
import { USER } from '../../../../functional/services/ml/security_common'; | ||
import { DataFrameAnalyticsConfig } from '../../../../../plugins/ml/public/application/data_frame_analytics/common'; | ||
import { DeepPartial } from '../../../../../plugins/ml/common/types/common'; | ||
import { COMMON_REQUEST_HEADERS } from '../../../../functional/services/ml/common_api'; | ||
|
||
export default ({ getService }: FtrProviderContext) => { | ||
const esArchiver = getService('esArchiver'); | ||
const supertest = getService('supertestWithoutAuth'); | ||
const ml = getService('ml'); | ||
|
||
const currentTime = `${Date.now()}`; | ||
const generateDestinationIndex = (analyticsId: string) => `user-${analyticsId}`; | ||
const jobEval: any = { | ||
regression: { | ||
index: generateDestinationIndex(`regression_${currentTime}`), | ||
evaluation: { | ||
regression: { | ||
actual_field: 'stab', | ||
predicted_field: 'ml.stab_prediction', | ||
metrics: { | ||
r_squared: {}, | ||
mse: {}, | ||
msle: {}, | ||
huber: {}, | ||
}, | ||
}, | ||
}, | ||
}, | ||
classification: { | ||
index: generateDestinationIndex(`classification_${currentTime}`), | ||
evaluation: { | ||
classification: { | ||
actual_field: 'y', | ||
predicted_field: 'ml.y_prediction', | ||
metrics: { multiclass_confusion_matrix: {}, accuracy: {}, recall: {} }, | ||
}, | ||
}, | ||
}, | ||
}; | ||
const jobAnalysis: any = { | ||
classification: { | ||
source: { | ||
index: ['ft_bank_marketing'], | ||
query: { | ||
match_all: {}, | ||
}, | ||
}, | ||
analysis: { | ||
classification: { | ||
dependent_variable: 'y', | ||
training_percent: 20, | ||
}, | ||
}, | ||
}, | ||
regression: { | ||
source: { | ||
index: ['ft_egs_regression'], | ||
query: { | ||
match_all: {}, | ||
}, | ||
}, | ||
analysis: { | ||
regression: { | ||
dependent_variable: 'stab', | ||
training_percent: 20, | ||
}, | ||
}, | ||
}, | ||
}; | ||
|
||
interface TestConfig { | ||
jobType: string; | ||
config: DeepPartial<DataFrameAnalyticsConfig>; | ||
eval: any; | ||
} | ||
|
||
const testJobConfigs: TestConfig[] = ['regression', 'classification'].map((jobType, idx) => { | ||
const analyticsId = `${jobType}_${currentTime}`; | ||
return { | ||
jobType, | ||
config: { | ||
id: analyticsId, | ||
description: `Testing ${jobType} evaluation`, | ||
dest: { | ||
index: generateDestinationIndex(analyticsId), | ||
results_field: 'ml', | ||
}, | ||
analyzed_fields: { | ||
includes: [], | ||
excludes: [], | ||
}, | ||
model_memory_limit: '60mb', | ||
...jobAnalysis[jobType], | ||
}, | ||
eval: jobEval[jobType], | ||
}; | ||
}); | ||
|
||
async function createJobs(mockJobConfigs: TestConfig[]) { | ||
for (const jobConfig of mockJobConfigs) { | ||
await ml.api.createAndRunDFAJob(jobConfig.config as DataFrameAnalyticsConfig); | ||
} | ||
} | ||
|
||
describe('POST data_frame/_evaluate', () => { | ||
before(async () => { | ||
await esArchiver.loadIfNeeded('ml/bm_classification'); | ||
await esArchiver.loadIfNeeded('ml/egs_regression'); | ||
await ml.testResources.setKibanaTimeZoneToUTC(); | ||
await createJobs(testJobConfigs); | ||
}); | ||
|
||
after(async () => { | ||
await ml.api.cleanMlIndices(); | ||
}); | ||
|
||
testJobConfigs.forEach((testConfig) => { | ||
describe(`EvaluateDataFrameAnalytics ${testConfig.jobType}`, async () => { | ||
it(`should evaluate ${testConfig.jobType} analytics job`, async () => { | ||
const { body } = await supertest | ||
.post(`/api/ml/data_frame/_evaluate`) | ||
.auth(USER.ML_POWERUSER, ml.securityCommon.getPasswordForUser(USER.ML_POWERUSER)) | ||
.set(COMMON_REQUEST_HEADERS) | ||
.send(testConfig.eval) | ||
.expect(200); | ||
|
||
if (testConfig.jobType === 'classification') { | ||
const { classification } = body; | ||
expect(body).to.have.property('classification'); | ||
expect(classification).to.have.property('recall'); | ||
expect(classification).to.have.property('accuracy'); | ||
expect(classification).to.have.property('multiclass_confusion_matrix'); | ||
} else { | ||
const { regression } = body; | ||
expect(body).to.have.property('regression'); | ||
expect(regression).to.have.property('mse'); | ||
expect(regression).to.have.property('msle'); | ||
expect(regression).to.have.property('r_squared'); | ||
} | ||
}); | ||
|
||
it(`should evaluate ${testConfig.jobType} job for the user with only view permission`, async () => { | ||
const { body } = await supertest | ||
.post(`/api/ml/data_frame/_evaluate`) | ||
.auth(USER.ML_VIEWER, ml.securityCommon.getPasswordForUser(USER.ML_VIEWER)) | ||
.set(COMMON_REQUEST_HEADERS) | ||
.send(testConfig.eval) | ||
.expect(200); | ||
|
||
if (testConfig.jobType === 'classification') { | ||
const { classification } = body; | ||
expect(body).to.have.property('classification'); | ||
expect(classification).to.have.property('recall'); | ||
expect(classification).to.have.property('accuracy'); | ||
expect(classification).to.have.property('multiclass_confusion_matrix'); | ||
} else { | ||
const { regression } = body; | ||
expect(body).to.have.property('regression'); | ||
expect(regression).to.have.property('mse'); | ||
expect(regression).to.have.property('msle'); | ||
expect(regression).to.have.property('r_squared'); | ||
} | ||
}); | ||
|
||
it(`should not allow unauthorized user to evaluate ${testConfig.jobType} job`, async () => { | ||
const { body } = await supertest | ||
.post(`/api/ml/data_frame/_evaluate`) | ||
.auth(USER.ML_UNAUTHORIZED, ml.securityCommon.getPasswordForUser(USER.ML_UNAUTHORIZED)) | ||
.set(COMMON_REQUEST_HEADERS) | ||
.send(testConfig.eval) | ||
.expect(403); | ||
|
||
expect(body.error).to.eql('Forbidden'); | ||
expect(body.message).to.eql('Forbidden'); | ||
}); | ||
}); | ||
}); | ||
}); | ||
}; |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters