Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[ML] Adds support for regression.mean_squared_error to eval API #44140

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@
*/
package org.elasticsearch.client.ml.dataframe.evaluation;

import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.Regression;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.BinarySoftClassification;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.xcontent.NamedXContentRegistry;
Expand All @@ -38,19 +40,24 @@ public List<NamedXContentRegistry.Entry> getNamedXContentParsers() {
// Evaluations
new NamedXContentRegistry.Entry(
Evaluation.class, new ParseField(BinarySoftClassification.NAME), BinarySoftClassification::fromXContent),
new NamedXContentRegistry.Entry(Evaluation.class, new ParseField(Regression.NAME), Regression::fromXContent),
// Evaluation metrics
new NamedXContentRegistry.Entry(EvaluationMetric.class, new ParseField(AucRocMetric.NAME), AucRocMetric::fromXContent),
new NamedXContentRegistry.Entry(EvaluationMetric.class, new ParseField(PrecisionMetric.NAME), PrecisionMetric::fromXContent),
new NamedXContentRegistry.Entry(EvaluationMetric.class, new ParseField(RecallMetric.NAME), RecallMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class, new ParseField(ConfusionMatrixMetric.NAME), ConfusionMatrixMetric::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.class, new ParseField(MeanSquaredErrorMetric.NAME), MeanSquaredErrorMetric::fromXContent),
// Evaluation metrics results
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(AucRocMetric.NAME), AucRocMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(PrecisionMetric.NAME), PrecisionMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(RecallMetric.NAME), RecallMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(MeanSquaredErrorMetric.NAME), MeanSquaredErrorMetric.Result::fromXContent),
new NamedXContentRegistry.Entry(
EvaluationMetric.Result.class, new ParseField(ConfusionMatrixMetric.NAME), ConfusionMatrixMetric.Result::fromXContent));
}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.regression;

import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
import org.elasticsearch.common.xcontent.ObjectParser;
import org.elasticsearch.common.xcontent.ToXContent;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;

import java.io.IOException;
import java.util.Objects;

import static org.elasticsearch.common.xcontent.ConstructingObjectParser.constructorArg;

/**
* Calculates the mean squared error between two known numerical fields.
*
* equation: mse = 1/n * Σ(y - y´)^2
*/
public class MeanSquaredErrorMetric implements EvaluationMetric {

public static final String NAME = "mean_squared_error";

private static final ObjectParser<MeanSquaredErrorMetric, Void> PARSER =
new ObjectParser<>("mean_squared_error", true, MeanSquaredErrorMetric::new);

public static MeanSquaredErrorMetric fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}

public MeanSquaredErrorMetric() {

}

@Override
public XContentBuilder toXContent(XContentBuilder builder, ToXContent.Params params) throws IOException {
builder.startObject();
builder.endObject();
return builder;
}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
return true;
}

@Override
public int hashCode() {
// create static hash code from name as there are currently no unique fields per class instance
return Objects.hashCode(NAME);
}

@Override
public String getName() {
return NAME;
}

public static class Result implements EvaluationMetric.Result {

public static final ParseField ERROR = new ParseField("error");
private final double error;

public static Result fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}

private static final ConstructingObjectParser<Result, Void> PARSER =
new ConstructingObjectParser<>("mean_squared_error_result", true, args -> new Result((double) args[0]));

static {
PARSER.declareDouble(constructorArg(), ERROR);
}

public Result(double error) {
this.error = error;
}

@Override
public XContentBuilder toXContent(XContentBuilder builder, ToXContent.Params params) throws IOException {
builder.startObject();
builder.field(ERROR.getPreferredName(), error);
builder.endObject();
return builder;
}

public double getError() {
return error;
}

@Override
public String getMetricName() {
return NAME;
}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Result that = (Result) o;
return Objects.equals(that.error, this.error);
}

@Override
public int hashCode() {
return Objects.hash(error);
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,129 @@
/*
* Licensed to Elasticsearch under one or more contributor
* license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright
* ownership. Elasticsearch licenses this file to you under
* the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
package org.elasticsearch.client.ml.dataframe.evaluation.regression;

import org.elasticsearch.client.ml.dataframe.evaluation.Evaluation;
import org.elasticsearch.client.ml.dataframe.evaluation.EvaluationMetric;
import org.elasticsearch.common.Nullable;
import org.elasticsearch.common.ParseField;
import org.elasticsearch.common.xcontent.ConstructingObjectParser;
import org.elasticsearch.common.xcontent.ToXContent;
import org.elasticsearch.common.xcontent.XContentBuilder;
import org.elasticsearch.common.xcontent.XContentParser;

import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.Objects;

/**
* Evaluation of regression results.
*/
public class Regression implements Evaluation {

public static final String NAME = "regression";

private static final ParseField ACTUAL_FIELD = new ParseField("actual_field");
private static final ParseField PREDICTED_FIELD = new ParseField("predicted_field");
private static final ParseField METRICS = new ParseField("metrics");

@SuppressWarnings("unchecked")
public static final ConstructingObjectParser<Regression, Void> PARSER = new ConstructingObjectParser<>(
NAME, true, a -> new Regression((String) a[0], (String) a[1], (List<EvaluationMetric>) a[2]));

static {
PARSER.declareString(ConstructingObjectParser.constructorArg(), ACTUAL_FIELD);
PARSER.declareString(ConstructingObjectParser.constructorArg(), PREDICTED_FIELD);
PARSER.declareNamedObjects(ConstructingObjectParser.optionalConstructorArg(),
(p, c, n) -> p.namedObject(EvaluationMetric.class, n, c), METRICS);
}

public static Regression fromXContent(XContentParser parser) {
return PARSER.apply(parser, null);
}

/**
* The field containing the actual value
* The value of this field is assumed to be numeric
*/
private final String actualField;

/**
* The field containing the predicted value
* The value of this field is assumed to be numeric
*/
private final String predictedField;

/**
* The list of metrics to calculate
*/
private final List<EvaluationMetric> metrics;

public Regression(String actualField, String predictedField) {
this(actualField, predictedField, (List<EvaluationMetric>)null);
}

public Regression(String actualField, String predictedField, EvaluationMetric... metrics) {
this(actualField, predictedField, Arrays.asList(metrics));
}

public Regression(String actualField, String predictedField, @Nullable List<EvaluationMetric> metrics) {
this.actualField = actualField;
this.predictedField = predictedField;
this.metrics = metrics;
}

@Override
public String getName() {
return NAME;
}

@Override
public XContentBuilder toXContent(XContentBuilder builder, ToXContent.Params params) throws IOException {
builder.startObject();
builder.field(ACTUAL_FIELD.getPreferredName(), actualField);
builder.field(PREDICTED_FIELD.getPreferredName(), predictedField);

if (metrics != null) {
builder.startObject(METRICS.getPreferredName());
for (EvaluationMetric metric : metrics) {
builder.field(metric.getName(), metric);
}
builder.endObject();
}

builder.endObject();
return builder;
}

@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
Regression that = (Regression) o;
return Objects.equals(that.actualField, this.actualField)
&& Objects.equals(that.predictedField, this.predictedField)
&& Objects.equals(that.metrics, this.metrics);
}

@Override
public int hashCode() {
return Objects.hash(actualField, predictedField, metrics);
}
}
Original file line number Diff line number Diff line change
Expand Up @@ -123,6 +123,8 @@
import org.elasticsearch.client.ml.dataframe.DataFrameAnalyticsStats;
import org.elasticsearch.client.ml.dataframe.OutlierDetection;
import org.elasticsearch.client.ml.dataframe.QueryConfig;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.MeanSquaredErrorMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.regression.Regression;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.AucRocMetric;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.BinarySoftClassification;
import org.elasticsearch.client.ml.dataframe.evaluation.softclassification.ConfusionMatrixMetric;
Expand Down Expand Up @@ -1578,6 +1580,33 @@ public void testEvaluateDataFrame() throws IOException {
assertThat(curvePointAtThreshold1.getTruePositiveRate(), equalTo(0.0));
assertThat(curvePointAtThreshold1.getFalsePositiveRate(), equalTo(0.0));
assertThat(curvePointAtThreshold1.getThreshold(), equalTo(1.0));

String regressionIndex = "evaluate-regression-test-index";
createIndex(regressionIndex, mappingForRegression());
BulkRequest regressionBulk = new BulkRequest()
.setRefreshPolicy(WriteRequest.RefreshPolicy.IMMEDIATE)
.add(docForRegression(regressionIndex, 0.3, 0.1)) // #0
.add(docForRegression(regressionIndex, 0.3, 0.2)) // #1
.add(docForRegression(regressionIndex, 0.3, 0.3)) // #2
.add(docForRegression(regressionIndex, 0.3, 0.4)) // #3
.add(docForRegression(regressionIndex, 0.3, 0.7)) // #4
.add(docForRegression(regressionIndex, 0.5, 0.2)) // #5
.add(docForRegression(regressionIndex, 0.5, 0.3)) // #6
.add(docForRegression(regressionIndex, 0.5, 0.4)) // #7
.add(docForRegression(regressionIndex, 0.5, 0.8)) // #8
.add(docForRegression(regressionIndex, 0.5, 0.9)); // #9
highLevelClient().bulk(regressionBulk, RequestOptions.DEFAULT);

evaluateDataFrameRequest = new EvaluateDataFrameRequest(regressionIndex, new Regression(actualRegression, probabilityRegression));

evaluateDataFrameResponse =
execute(evaluateDataFrameRequest, machineLearningClient::evaluateDataFrame, machineLearningClient::evaluateDataFrameAsync);
assertThat(evaluateDataFrameResponse.getEvaluationName(), equalTo(Regression.NAME));
assertThat(evaluateDataFrameResponse.getMetrics().size(), equalTo(1));

MeanSquaredErrorMetric.Result mseResult = evaluateDataFrameResponse.getMetricByName(MeanSquaredErrorMetric.NAME);
assertThat(mseResult.getMetricName(), equalTo(MeanSquaredErrorMetric.NAME));
assertThat(mseResult.getError(), closeTo(0.061000000, 1e-9));
}

private static XContentBuilder defaultMappingForTest() throws IOException {
Expand Down Expand Up @@ -1615,6 +1644,28 @@ private static IndexRequest docForClassification(String indexName, boolean isTru
.source(XContentType.JSON, actualField, Boolean.toString(isTrue), probabilityField, p);
}

private static final String actualRegression = "regression_actual";
private static final String probabilityRegression = "regression_prob";

private static XContentBuilder mappingForRegression() throws IOException {
return XContentFactory.jsonBuilder().startObject()
.startObject("properties")
.startObject(actualRegression)
.field("type", "double")
.endObject()
.startObject(probabilityRegression)
.field("type", "double")
.endObject()
.endObject()
.endObject();
}

private static IndexRequest docForRegression(String indexName, double act, double p) {
return new IndexRequest()
.index(indexName)
.source(XContentType.JSON, actualRegression, act, probabilityRegression, p);
}

private void createIndex(String indexName, XContentBuilder mapping) throws IOException {
highLevelClient().indices().create(new CreateIndexRequest(indexName).mapping(mapping), RequestOptions.DEFAULT);
}
Expand Down
Loading