Skip to content

An extension of the CornerNet architecture for RGB+T image inputs

Notifications You must be signed in to change notification settings

egeonat/MS-CornerNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MS-CornerNet

This is a pytorch implementation of MS-CornerNet, a Multispectral extension of the CornerNet paper(https://arxiv.org/abs/1808.01244) to work on RGB+T (Thermal) inputs, specifically the kaist dataset. This repository is extended from the base code at: https://github.com/zzzxxxttt/pytorch_simple_CornerNet and the matlab testing code is taken from https://github.com/Li-Chengyang/MSDS-RCNN with slight modifications.

Requirements:

  • python>=3.5
  • pytorch==0.4.1 or 1.1.0(DistributedDataParallel training only available using 1.1.0)
  • tensorboardX(optional)

Getting Started

  1. Disable cudnn batch normalization. Open torch/nn/functional.py and find the line with torch.batch_norm and replace the torch.backends.cudnn.enabled with False.

  2. Clone this repo:

  3. Compile corner pooling. If you are using pytorch 0.4.1, rename $MS_CORNERNET_ROOT/lib/cpool_old to $MS_CORNERNET_ROOT/lib/cpool, otherwise rename $MS_CORNERNET_ROOT/lib/cpool_new to $MS_CORNERNET_ROOT/lib/cpool.

    cd $CornerNet_ROOT/lib/cpool
    python setup.py install --user
    
  4. Compile NMS.

    cd $MS_CORNERNET_ROOT/lib/nms
    make
    
  5. For KAIST training, Download KAIST dataset and put data into $CornerNet_ROOT/data/kaist/images and $CornerNet_ROOT/data/kaist/annotations. Annotations should then be further separated into two directories train_sanitized and test_improved

Train

KAIST

multi GPU using nn.parallel.DistributedDataParallel

python -m torch.distributed.launch --nproc_per_node NUM_GPUS train.py \
        --log_name kaist_hg \
        --dataset kaist \
        --arch large_hourglass \
        --lr 5e-4 \
        --lr_step 90,120 \
        --batch_size 8 \
        --num_epochs 100 \
        --num_workers 1

Evaluate

COCO

python test.py --log_name kaist_hg \
               --dataset kaist \
               --arch large_hourglass

About

An extension of the CornerNet architecture for RGB+T image inputs

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published