Skip to content

Commit

Permalink
[Imo1965P1] add formalization from Jeremy Avigad
Browse files Browse the repository at this point in the history
  • Loading branch information
dwrensha committed Nov 21, 2024
1 parent 77b73d6 commit 4716b7d
Show file tree
Hide file tree
Showing 2 changed files with 98 additions and 0 deletions.
1 change: 1 addition & 0 deletions Compfiles.lean
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ import Compfiles.Imo1963P5
import Compfiles.Imo1964P1
import Compfiles.Imo1964P2
import Compfiles.Imo1964P4
import Compfiles.Imo1965P1
import Compfiles.Imo1965P2
import Compfiles.Imo1966P4
import Compfiles.Imo1968P2
Expand Down
97 changes: 97 additions & 0 deletions Compfiles/Imo1965P1.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
/-
Copyright (c) 2024 The Compfiles Contributors. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Jeremy Avigad
-/

import Mathlib.Tactic

import ProblemExtraction

problem_file { tags := [.Algebra] }

/-!
# International Mathematical Olympiad 1965, Problem 1
Determine all values x in the interval 0 ≤ x ≤ 2π which
satisfy the inequality
2 cos x ≤ |√(1 + sin 2x) − √(1 − sin 2x)| ≤ √2.
-/

namespace Imo1965P1

open Real Set

noncomputable abbrev aux (x : ℝ) := √(1 + sin (2*x)) - √(1 - sin (2*x))

determine the_answer := Icc (π/4) (7*π/4)

problem imo1965_p1 :
{x ∈ Icc 0 (2*π) | 2 * cos x ≤ |aux x| ∧ |aux x| ≤ √2} = the_answer := by
-- We follow https://artofproblemsolving.com/wiki/index.php/1965_IMO_Problems/Problem_1.
have h0 : ∀ x, (aux x)^2 = 2 - 2*|cos (2*x)| := by
intro x
rw [←sqrt_sq_eq_abs (cos (2 * x)), cos_sq', aux, sub_sq, sq_sqrt, sq_sqrt, mul_assoc,
←sqrt_mul]; ring_nf
repeat { linarith [sin_le_one (2 * x), neg_one_le_sin (2 * x)] }
have : ∀ x, |aux x| ≤ √2 := by
intro x
apply nonneg_le_nonneg_of_sq_le_sq (by norm_num)
simp [aux, ←pow_two, h0]
simp_rw [this, and_true]
symm; ext x; constructor; dsimp
. rw [the_answer]; rintro ⟨h1, h2⟩
constructor
. simp; constructor <;> linarith
have : x ∈ Ico (π/4) (π / 2) ∪ Icc (π/2) (3*π/2) ∪ Ioc (3*π/2) (7*π/4) := by
simp only [the_answer, mem_Icc, mem_union, mem_Ico, mem_Ioc]
rcases lt_or_ge x (π/2) with h3 | h3 <;>
rcases le_or_gt x (3*π/2) with h4 | h4 <;> simp [*]
rcases this with (⟨_, h4⟩ | ⟨h3, h4⟩) | ⟨h3, _⟩
. have cos2x_nonpos : cos (2*x) ≤ 0 := by
apply cos_nonpos_of_pi_div_two_le_of_le <;> linarith
have cosx_nonneg : 0 ≤ cos x := by
apply cos_nonneg_of_neg_pi_div_two_le_of_le <;> linarith
have cosx2_nonneg : 02 * cos x := by linarith
rw [←abs_of_nonneg cosx2_nonneg, ←sq_le_sq, h0, abs_of_nonpos cos2x_nonpos, cos_two_mul]
linarith
. trans 0; swap; simp
suffices cos x ≤ 0 by linarith
apply cos_nonpos_of_pi_div_two_le_of_le h3
linarith
. have cos2x_nonpos : cos (2*x) ≤ 0 := by
rw [←cos_neg, ←cos_add_two_pi, ←cos_add_two_pi]
apply cos_nonpos_of_pi_div_two_le_of_le <;> linarith
have cosx_nonneg : 0 ≤ cos x := by
rw [←cos_neg, ←cos_add_two_pi]
apply cos_nonneg_of_neg_pi_div_two_le_of_le <;> linarith
have cosx2_nonneg : 02 * cos x := by linarith
rw [←abs_of_nonneg cosx2_nonneg, ←sq_le_sq, h0, abs_of_nonpos cos2x_nonpos, cos_two_mul]
linarith
rintro ⟨⟨h1, h2⟩, h3⟩
by_contra h4
rw [the_answer, mem_Icc, not_and_or] at h4; push_neg at h4
have cos2x_nonneg : 0 ≤ cos (2*x) := by
rcases h4 with h4 | h4
. apply cos_nonneg_of_neg_pi_div_two_le_of_le <;> linarith
. rw [←cos_sub_two_pi, ←cos_sub_two_pi]
apply cos_nonneg_of_neg_pi_div_two_le_of_le <;> linarith
have cosx_nonneg : 0 ≤ cos x := by
rcases h4 with h4 | h4
. apply cos_nonneg_of_neg_pi_div_two_le_of_le <;> linarith
. rw [←cos_neg, ←cos_add_two_pi]
apply cos_nonneg_of_neg_pi_div_two_le_of_le <;> linarith
have cosx2_nonneg : 02 * cos x := by linarith
rw [←abs_of_nonneg cosx2_nonneg, ←sq_le_sq, h0, abs_of_nonneg cos2x_nonneg, cos_two_mul] at h3
ring_nf at h3
have : (cos x)^21/2 := by linarith
suffices (cos (π/4))^2 < (cos x)^2 by
rw [cos_pi_div_four, div_pow] at this; norm_num at this
linarith
rw [sq_lt_sq, abs_of_nonneg cosx_nonneg, abs_of_nonneg]
swap; simp [cos_pi_div_four]; positivity
rcases h4 with h5 | h5
. apply cos_lt_cos_of_nonneg_of_le_pi_div_two h1 (by linarith) h5
rw [←cos_neg x, ←cos_add_two_pi (-x)]
apply cos_lt_cos_of_nonneg_of_le_pi_div_two <;> linarith

0 comments on commit 4716b7d

Please sign in to comment.