Skip to content

dsilvadeepal/ML-model-implementations

Repository files navigation

ML-model-implementations

Various Machine Learning model implementations in R

Part 1

Classification

  • Logistic Regression
  • Decision Tree
  • Random Forests
  • XG Boost (Extreme Gradient Boosting)
  • Naive Bayes
  • Support Vector Model(SVM)
  • K-Nearest Neighbours (K-NN)

Regression

  • Simple/Multiple Linear Regression
  • Regression Trees

Part 2

Clustering

  • K-Means
  • Hierarchial

Tuning & Understanding the Model (stats & maths)

  • Evaluation metrics
    • Accuracy and Kappa
    • RMSE and R^2
    • ROC (AUC, Sensitivity and Specificity)
    • LogLoss
  • Hyperparameter Tuning for each model

Artificial Neural Networks

  • MLP
  • RNN
  • CNN

About

Various Machine Learning model implementations in R

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published