Various Machine Learning model implementations in R
- Logistic Regression
- Decision Tree
- Random Forests
- XG Boost (Extreme Gradient Boosting)
- Naive Bayes
- Support Vector Model(SVM)
- K-Nearest Neighbours (K-NN)
- Simple/Multiple Linear Regression
- Regression Trees
- K-Means
- Hierarchial
- Evaluation metrics
- Accuracy and Kappa
- RMSE and R^2
- ROC (AUC, Sensitivity and Specificity)
- LogLoss
- Hyperparameter Tuning for each model
- MLP
- RNN
- CNN