Skip to content

Commit

Permalink
Implement measure ml model
Browse files Browse the repository at this point in the history
  • Loading branch information
thomashbrnrd committed Mar 15, 2024
1 parent 233505f commit 2ca1732
Show file tree
Hide file tree
Showing 8 changed files with 383 additions and 9 deletions.
2 changes: 2 additions & 0 deletions backend/requirements.txt
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,8 @@ boto3==1.28.39
autodynatrace==2.0.0
# ML
ultralytics==8.1.2
opencv-python==4.9.0.80
onnxruntime==1.17.1
# Dev
pytest==7.4.3
coverage==7.3.2
Binary file added backend/src/ml/measure/best_card.onnx
Binary file not shown.
Binary file added backend/src/ml/measure/best_keypoints.pt
Binary file not shown.
360 changes: 360 additions & 0 deletions backend/src/ml/measure/measure.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,360 @@
import cv2
import numpy as np
import onnxruntime as ort
from ultralytics import YOLO

NMS_THRES = 0.1
CONF_THRES = 0
PI = 3.141592

# DOTA-v1.5
CLASSES = ["Card"]

# Class YOLOV5_OBB from repository


class YOLOv5_OBB:
def __init__(self, model_path, stride=32):
self.model_path = model_path
self.stride = stride

def rbox2poly(self, obboxes):
"""
Trans rbox format to poly format.
Args:
rboxes (array/tensor): (num_gts, [cx cy l s θ]) θ∈[-pi/2, pi/2)
Returns:
polys (array/tensor): (num_gts, [x1 y1 x2 y2 x3 y3 x4 y4])
"""
center, w, h, theta = np.split(obboxes, (2, 3, 4), axis=-1)
Cos, Sin = np.cos(theta), np.sin(theta)
vector1 = np.concatenate([w / 2 * Cos, -w / 2 * Sin], axis=-1)
vector2 = np.concatenate([-h / 2 * Sin, -h / 2 * Cos], axis=-1)

point1 = center + vector1 + vector2
point2 = center + vector1 - vector2
point3 = center - vector1 - vector2
point4 = center - vector1 + vector2
order = obboxes.shape[:-1]
return np.concatenate([point1, point2, point3, point4], axis=-1).reshape(
*order, 8
)

def scale_polys(self, img1_shape, polys, img0_shape, ratio_pad=None):
# ratio_pad: [(h_raw, w_raw), (hw_ratios, wh_paddings)]
# Rescale coords (xyxyxyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = min(
img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]
) # gain = resized / raw
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (
img1_shape[0] - img0_shape[0] * gain
) / 2 # wh padding
else:
gain = ratio_pad[0][0] # h_ratios
pad = ratio_pad[1] # wh_paddings
polys[:, [0, 2, 4, 6]] -= pad[0] # x padding
polys[:, [1, 3, 5, 7]] -= pad[1] # y padding
polys[:, :8] /= gain # Rescale poly shape to img0_shape
# clip_polys(polys, img0_shape)
return polys

def letterbox(
self,
im,
new_shape,
color=(255, 0, 255),
auto=False,
scaleFill=False,
scaleup=True,
):
"""
Resize and pad image while meeting stride-multiple constraints
Returns:
im (array): (height, width, 3)
ratio (array): [w_ratio, h_ratio]
(dw, dh) (array): [w_padding h_padding]
"""
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int): # [h_rect, w_rect]
new_shape = (new_shape, new_shape)

# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)

# Compute padding
ratio = r, r # wh ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) # w h
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding

if auto: # minimum rectangle
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding
elif scaleFill: # stretch
dw, dh = 0.0, 0.0
new_unpad = (new_shape[1], new_shape[0]) # [w h]
ratio = (
new_shape[1] / shape[1],
new_shape[0] / shape[0],
) # [w_ratio, h_ratio]

dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(
im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
) # add border
return im, ratio, (dw, dh)

def preprocess(self, img, new_shape):
img = self.letterbox(img, new_shape, auto=False)[0]
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
img = np.ascontiguousarray(img).astype("float32")
img /= 255 # 0 - 255 to 0.0 - 1.0
if len(img.shape) == 3:
img = img[None] # expand for batch dim
return img

def postprecess(self, prediction, src_img, new_shape):
nc = prediction.shape[2] - 5 - 180 # number of classes
maxconf = np.max(prediction[..., 4])
CONF_THRES = (
maxconf - 0.1
) # To retrieve best results and not limit to an absolute threshold
xc = prediction[..., 4] > CONF_THRES
outputs = prediction[:][xc]

generate_boxes, bboxes, scores = [], [], []

for out in outputs:
cx, cy, longside, shortside, obj_score = out[:5]
class_scores = out[5 : 5 + nc]
class_idx = np.argmax(class_scores)

max_class_score = class_scores[class_idx] * obj_score
if max_class_score < CONF_THRES:
continue

theta_scores = out[5 + nc :]
theta_idx = np.argmax(theta_scores)
theta_pred = (theta_idx - 90) / 180 * PI

bboxes.append([[cx, cy], [longside, shortside], max_class_score])
scores.append(max_class_score)
generate_boxes.append(
[cx, cy, longside, shortside, theta_pred, max_class_score, class_idx]
)

indices = cv2.dnn.NMSBoxesRotated(bboxes, scores, CONF_THRES, NMS_THRES)
det = np.array(generate_boxes)[indices.flatten()]

pred_poly = self.rbox2poly(det[:, :5])

pred_poly = self.scale_polys(new_shape, pred_poly, src_img.shape)
det = np.concatenate((pred_poly, det[:, -2:]), axis=1) # (n, [poly conf cls])
return det

def run(self, src_img):
net = ort.InferenceSession(self.model_path, providers=["CPUExecutionProvider"])
input_name = net.get_inputs()[0].name
input_shape = net.get_inputs()[0].shape
new_shape = input_shape[-2:]

blob = self.preprocess(src_img, new_shape)
outputs = net.run(None, {input_name: blob})[0]
return self.postprecess(outputs, src_img, new_shape)


def get_card(image, model):
"""Predict the keypoints on the image
Args:
image (opencv matrix): image after CV2.imread(path)
modelCard (model): model after load_models call
Returns:
Prediction: Oriented boundng box(x,y,x,y,x,y,x,y ,CONF_THRES, NMS_THRES)
"""

return model.run(image)


def get_keypoints(image, model):
"""Predict the keypoints on the image
Args:
image (opencv matrix): image after CV2.imread(path)
modelWeapon (model): model after load_models call
Returns:
Prediction: keypoints coordinates [[KP1x,KP1y],[KP2x,KP2y],[KP3x,KP3y],[KP4x,KP4y]]
"""
results = model(image, verbose=False)
return results[0].keypoints.data[0]


def load_models(model_card_path, model_weapon_path):
"""Load model structure and weights
Args:
model_card (str): path to model (.onnx file)
modelWeapon (str): path to model (.pt file)
Returns:
Models: loaded models ready for prediction and warmed-up
"""
model_card = YOLOv5_OBB(model_path=model_card_path, stride=32)

model_weapon = YOLO(
"yolov8n-pose.pt"
) # necessary to load the base model before the pretrained weights
model_weapon = YOLO(model_weapon_path)

# warmup
imagetest = cv2.imread("./src/ml/measure/warmup.jpg")
get_card(imagetest, model_card)
get_keypoints(imagetest, model_weapon)

return model_card, model_weapon


model_card, model_weapon = load_models(
"./src/ml/measure/best_card.onnx", "./src/ml/measure/best_keypoints.pt"
)


# geometric functions for distance calculation


def distanceCalculate(p1, p2):
"""Distance calculation between two points
Args:
P1 (tuple): (x1,y1)
P2 (tuple): (x2,y2)
Returns:
Distance: float in px
"""
dis = ((p2[0] - p1[0]) ** 2 + (p2[1] - p1[1]) ** 2) ** 0.5
return dis


def scalarproduct(v1, v2):
"""Scalar product between two vectors
Args:
P1 (vector): (u1,v1)
P2 (vector): (u2,v2)
Returns:
Projection: float in px
"""
return (v1[0] * v2[0] + v1[1] * v2[1]) / np.linalg.norm(v2)


def rotate(img):
"""Rotate the image if not in landscape
Args:
image (opencv matrix): image after CV2.imread(path)
Returns:
image (opencv matrix): image after CV2.imread(path)
"""
height, width, channels = img.shape
if height > width:
img = cv2.rotate(img, cv2.ROTATE_90_CLOCKWISE)
return img


def get_lengths_from_image(img_bytes, draw=True, output_filename="result.jpg"):
"""Predict the keypoints on the image
Args:
image (opencv matrix): image after CV2.imread(path)
modelCard (model): model after load_models call
modelWeapon (model): model after load_models call
draw (Boolean): whether the result image need to be drawed and saved
output_filename: Filename and location for the image output
Returns:
Length (list): Overall Length, Barrel Length, Card detection confidence score
"""
image = np.asarray(bytearray(img_bytes), dtype="uint8")
image = cv2.imdecode(image, cv2.IMREAD_COLOR)
image = rotate(image)

keypoints = get_keypoints(image, model_weapon)
if keypoints[3][0] < keypoints[0][0]: # Weapon upside down
image = cv2.rotate(image, cv2.ROTATE_180)
keypoints = get_keypoints(image, model_weapon)

cards = get_card(image, model_card)
card = cards[0]
confCard = card[8]
CardP = distanceCalculate((card[0], card[1]), (card[4], card[5]))
CardP = distanceCalculate((card[2], card[3]), (card[6], card[7]))
CardR = (8.56**2 + 5.398**2) ** 0.5

factor = CardR / CardP
canonP = distanceCalculate(
(int(keypoints[2][0]), int(keypoints[2][1])),
(int(keypoints[3][0]), int(keypoints[3][1])),
)
canonR = round(canonP * factor, 2)

totalP1 = scalarproduct(keypoints[0] - keypoints[3], keypoints[2] - keypoints[3])
totalP2 = scalarproduct(keypoints[1] - keypoints[3], keypoints[2] - keypoints[3])

totalP = float(max(totalP1, totalP2))

totalR = round(totalP * factor, 2)

if draw:
img2 = image
for keypoint in keypoints:
img2 = cv2.circle(
img2,
(int(keypoint[0]), int(keypoint[1])),
radius=5,
color=(0, 0, 255),
thickness=20,
)

img2 = cv2.line(
img2,
(int(card[0]), int(card[1])),
(int(card[2]), int(card[3])),
color=(255, 0, 0),
thickness=15,
)
img2 = cv2.line(
img2,
(int(card[4]), int(card[5])),
(int(card[2]), int(card[3])),
color=(255, 0, 0),
thickness=15,
)
img2 = cv2.line(
img2,
(int(card[6]), int(card[7])),
(int(card[4]), int(card[5])),
color=(255, 0, 0),
thickness=15,
)
img2 = cv2.line(
img2,
(int(card[0]), int(card[1])),
(int(card[6]), int(card[7])),
color=(255, 0, 0),
thickness=15,
)
img2 = cv2.line(
img2,
(int(card[0]), int(card[1])),
(int(card[4]), int(card[5])),
color=(255, 255, 0),
thickness=15,
)

cv2.imwrite(output_filename, img2)

return (totalR, canonR, confCard)
Binary file added backend/src/ml/measure/warmup.jpg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 2ca1732

Please sign in to comment.